American University of Beirut
 MATH 202
 Differential Equations
 Spring 2009

quiz \# 2 - solution
Exercise 1 Find the general solution of the given differential equation (do not find the constants)
a) $y^{\prime \prime \prime}-y^{\prime \prime}=6$
$y=\underbrace{c_{0}+c_{1} x+c_{2} e^{x}}_{y_{c}}+\underbrace{c_{3} x^{2}}_{y_{p}}$
b) $y^{\prime \prime}-4 y^{\prime}+5 y=e^{-x}+2 \cos (2 x)$
$y=\underbrace{e^{2 x}\left(c_{0} \cos x+c_{1} \sin x\right)}_{y_{c}}+\underbrace{c_{2} e^{-x}}_{y_{p_{1}}}+\underbrace{c_{3} \cos (2 x)+c_{4} \sin (2 x)}_{y_{p_{2}}}$
c) $y^{(4)}-2 y^{\prime \prime}+y=1+x-x e^{x}+\sin x$
$y=\underbrace{c_{1} e^{x}+c_{2} x e^{x}+c_{3} e^{-x}+c_{4} x e^{-x}}_{y_{c}}+\underbrace{c_{5}+c_{6} x}_{y_{p_{1}}}+\underbrace{\left(c_{7} x^{2}+c_{8} x^{3}\right) e^{x}}_{y_{p_{2}}}+\underbrace{c_{9} \sin x+c_{10} \cos x}_{y_{p_{3}}}$
Exercise 2 Find the general solution of $y^{\prime \prime}-y=\frac{2 e^{x}}{e^{x}+e^{-x}}$
$y_{c}=c_{1} e^{x}+c_{2} e^{-x} ; W=-2$,
$c_{1}^{\prime}=\frac{1}{e^{x}+e^{-x}}=\frac{e^{x}}{1+e^{2 x}}$, and $c_{1}=\int \frac{e^{x}}{1+e^{2 x}} d x=\tan ^{-1}\left(e^{x}\right)$
$c_{2}^{\prime}=-\frac{e^{2 x}}{e^{x}+e^{-x}}$, and $c_{2}=-\int \frac{e^{2 x}}{e^{x}+e^{-x}} d x=-\int \frac{u^{2}}{u+\frac{1}{u}} \frac{d u}{u}=-\int \frac{u^{2}}{1+u^{2}} d u$ $=-\int\left(1-\frac{1}{1+u^{2}}\right) d u=\tan ^{-1}(u)-u=\tan ^{-1}\left(e^{x}\right)-e^{x}$
hence $y_{p}=\left(e^{x}+e^{-x}\right) \tan ^{-1}\left(e^{x}\right)-1$
and the general solution is: $y=y_{c}+y_{p}$
Exercise 3 Consider the differential equation

$$
(E): x^{2} y^{\prime \prime}-\left(x^{2}+2 x\right) y^{\prime}+(x+2) y=x^{3}
$$

a) check that $y_{1}=x$ is solution of $\left(E_{0}\right)$: obvious by direct substitution.
b) let $y_{2}=x u(x)$. Show that $u(x)$ satisfies a first order linear differential equation; find $u(x)$ then find the general solution of (E) on $(0, \infty)$.
$y_{2}^{\prime}=u(x)+x u^{\prime}(x), y_{2}^{\prime \prime}=2 u^{\prime}(x)+x u^{\prime \prime}(x)$, and substituting in (E) yields: $u^{\prime \prime}(x)-u^{\prime}(x)=1$.
Taking $v=u^{\prime}$, then $v^{\prime}-v=1$, and then $v(x)=e^{x}-1$, and $u(x)=e^{x}-x$.
The general solution of (E) is then: $y=\underbrace{c_{1} x+c_{2} x e^{x}}_{y_{c}}+\underbrace{-x^{2}}_{y_{p}}$

Exercise 4 Use the substitution $x=e^{t}$ to solve the Cauchy-Euler differential equation

$$
x^{2} y^{\prime \prime}-x y^{\prime}+y=x(\ln x)^{2}
$$

on $(0, \infty)$.
$\frac{d y}{d x}=\frac{d y}{d t} \times \frac{d t}{d x}=\frac{1}{x} \frac{d y}{d t}$ and $\frac{d^{2} y}{d x^{2}}=-\frac{1}{x^{2}} \frac{d y}{d t}+\frac{1}{x^{2}} \frac{d^{2} y}{d t^{2}}$
Substituting in the equation yields: $\frac{d^{2} y}{d t^{2}}-2 \frac{d y}{d t}+y=t^{2} e^{t}$, and the solution is
$y=\underbrace{c_{1} e^{t}+c_{2} t e^{t}}_{y_{c}}+\underbrace{\left(c_{3} t^{2}+c_{4} t^{3}+c_{5} t^{4}\right) e^{t}}_{y_{p}}$
hence $y=c_{1} x+c_{2} x \ln x+c_{3} x(\ln x)^{2}+c_{4} x(\ln x)^{3}+c_{5} x(\ln x)^{4}$

Exercise 5 Find two power series solutions of the differential equation $y^{\prime \prime}-x y^{\prime}+y=0$ about the ordinary point $x=0$. Give the radius of convergence.

Let $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ be a series solution of the differential equation. Deriving and substituting in the equation yields the following:

$$
\left\{\begin{array}{l}
c_{0}+2 c_{2}=0 \tag{1}\\
(n+2)(n+1) c_{n+2}-(n-1) c_{n}=0 \quad n \geq 1
\end{array}\right.
$$

equation (1) implies $c_{2}=-\frac{1}{2} c_{0}$
$c_{1} \in \mathbb{R}$, and from equation (2), we find that $c_{3}=c_{5}=c_{7}=\ldots=c_{2 n+1}=\ldots=0$, then $y_{1}=x$ is a solution.
form equation (2), $c_{2 n}=\frac{2 n-3}{2 n(2 n-1)} c_{2 n-2}$; solving the recurrence yields $c_{2 n}=-\frac{2 n-3}{2^{n} n!} c_{0}$, and $y_{2}=\sum_{n=0}^{\infty} c_{2 n} x^{2 n}$ is the other solution of the differential equation. The radius of convergence is $R=\infty$ (by ratio test).

The general solution is then: $y=c_{0} \sum_{n=0}^{\infty} \frac{2 n-3}{2^{n} n!} x^{2 n}+c_{1} x$

