American University of Beirut
 MATH 202
 Differential Equations
 Spring 2009
 quiz \# 2

Exercise 1 Find the general solution of the given differential equation (do not find the constants)
a) $y^{\prime \prime \prime}-y^{\prime \prime}=6$
b) $y^{\prime \prime}-4 y^{\prime}+5 y=e^{-x}+2 \cos (2 x)$
c) $y^{(4)}-2 y^{\prime \prime}+y=1+x-x e^{x}+\sin x$

Exercise 2 Find the general solution of $y^{\prime \prime}-y=\frac{2 e^{x}}{e^{x}+e^{-x}}$
Exercise 3 Consider the differential equation

$$
(E): x^{2} y^{\prime \prime}-\left(x^{2}+2 x\right) y^{\prime}+(x+2) y=x^{3}
$$

a) check that $y_{1}=x$ is solution of $\left(E_{0}\right)$
b) let $y_{2}=x u(x)$. Show that $u(x)$ satisfies a first order linear differential equation; find $u(x)$ then find the general solution of (E) on $(0, \infty)$.

Exercise 4 Use the substitution $x=e^{t}$ to solve the Cauchy-Euler differential equation

$$
x^{2} y^{\prime \prime}-x y^{\prime}+y=x(\ln x)^{2}
$$

on $(0, \infty)$.
Exercise 5 Find two power series solutions of the differential equation $y^{\prime \prime}-x y^{\prime}+y=0$ about the ordinary point $x=0$. Give the radius of convergence.
(give c_{n} explicitly.)

