American University of Beirut MATH 202

Differential Equations Spring 2009

quiz # 2

Exercise 1 Find the general solution of the given differential equation (*do not find the constants*)

a) y''' - y'' = 6b) $y'' - 4y' + 5y = e^{-x} + 2\cos(2x)$ c) $y^{(4)} - 2y'' + y = 1 + x - xe^x + \sin x$

Exercise 2 Find the general solution of $y'' - y = \frac{2e^x}{e^x + e^{-x}}$

Exercise 3 Consider the differential equation

(E):
$$x^2y'' - (x^2 + 2x)y' + (x + 2)y = x^3$$

a) check that $y_1 = x$ is solution of (E_0)

b) let $y_2 = xu(x)$. Show that u(x) satisfies a first order linear differential equation; find u(x) then find the general solution of (E) on $(0, \infty)$.

Exercise 4 Use the substitution $x = e^t$ to solve the Cauchy-Euler differential equation

$$x^{2}y'' - xy' + y = x(\ln x)^{2}$$

on $(0,\infty)$.

Exercise 5 Find two power series solutions of the differential equation y'' - xy' + y = 0 about the ordinary point x = 0. Give the radius of convergence. (give c_n explicitly.)