Math 202 - Final (Summer 11)

T. Tlas

- Please answer questions 4,5 and 6 on the same sheet of paper on which they are written. Questions 1, 2 and 3 each have an extra sheet for you to write your answer on them. Any part of your answer written on the wrong page will not be graded.
- There are 6 problems in total. Some questions have several parts. Make sure that you attempt them all.
- This is a closed book exam and no calculators are allowed.

Name :

ID \# :

$Q 1$	
$Q 2$	
$Q 3$	
$Q 4$	
$Q 5$	
$Q 6$	
TOTAL	

Problem 1

(4 points each) Solve the following IVPs:
i-

$$
y^{\prime}=y x-x+y-1 \quad ; \quad y(0)=2
$$

ii-

$$
y^{\prime \prime}-3 y^{\prime}+2 y=6 e^{-x} \quad ; \quad y(0)=0 \quad ; \quad y^{\prime}(0)=-1
$$

iii-

$$
y^{\prime \prime}+y=\delta(t-1) \quad ; \quad y(0)=0 \quad ; \quad y^{\prime}(0)=0
$$

iv-

$$
y^{\prime}+6 y+9 \int_{0}^{t} y(\tau) d \tau=\delta(t-1) \quad ; \quad y(0)=0
$$

ADDITIONAL SHEET FOR PROBLEM 1 ANSWER

Problem 2

(10 points) Solve the following BVP:

$$
4 x y^{\prime \prime}+2 y^{\prime}+y=0 \quad ; \quad y(0)=0 \quad, \quad y\left(\frac{\pi^{2}}{4}\right)=1
$$

ADDITIONAL SHEET FOR PROBLEM 2 ANSWER

Problem 3

(10 points) Solve the following IVP:

$$
\dot{\mathbf{X}}=\left(\begin{array}{cc}
2 & -1 \\
3 & -2
\end{array}\right) \mathbf{X}+\binom{0}{t} \quad ; \quad \mathbf{X}(0)=\binom{1}{0}
$$

ADDITIONAL SHEET FOR PROBLEM 3 ANSWER

Problem 4

(6 points) Prove the following identity involving the Bessel function:

$$
2 \lambda J_{\lambda}(x)=x J_{\lambda+1}(x)+x J_{\lambda-1}(x)
$$

where the series expression for the Bessel function is:

$$
J_{\lambda}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(1+\lambda+n)}\left(\frac{x}{2}\right)^{2 n+\lambda}
$$

Problem 5

(10 points) Let \vec{F} be the vector field given by

$$
\overrightarrow{F(x, y)}=-\frac{y}{x^{2}+y^{2}} \overrightarrow{\mathbf{i}}+\frac{x}{x^{2}+y^{2}} \overrightarrow{\mathbf{j}}
$$

Find $\int_{C} \vec{F} \cdot d \vec{r}$ where C is the curve made of the straight line segment going from $(1,0)$ to $(1,1)$ followed by the straight line segment going from $(1,1)$ to $(-1,1)$, followed by the straight line segment going from $(-1,1)$ to $(-1,0)$.

Problem 6

(8 points) Let V be the following vector field:

$$
\overrightarrow{V(x, y, z)}=\overrightarrow{\mathbf{k}}
$$

Let S be the upper unit hemisphere centered at the origin. Find the flux $\int_{S} \vec{V} \cdot d \vec{A}$, where the normal vector is 'outwards' (away from the origin).

