Math 202 - Exam 1 (Spring 09)

T. Tlas
$==$

- Please answer questions 2,3 and 4 on the same sheet of paper on which they are written. Question 1 has an extra sheet for you to write your answer on it. Any part of your answer written on the wrong page will not be graded.
- When finished leave your work on your desk for it to be collected by the proctors.
- There are 4 problems in total. Some questions have several parts to them. Make sure that you attempt them all.
- This is a closed book exam and no calculators are allowed.

Name :

ID \# :

Section Number :
===1

$Q 1$	
$Q 2$	
$Q 3$	
$Q 4$	
TOTAL	

Problem 1

(10 points each) Solve the following IVPs:
i-

$$
y^{\prime}=x^{2}+y^{2}+2 x y
$$

ii-

$$
y^{\prime}=y(y+1) x
$$

iii-

$$
y^{\prime}=-\frac{y}{x}+e^{x}
$$

iv-

$$
y^{\prime}=-\frac{2 x}{1+x^{2}+y}
$$

v-

$$
y^{\prime}=\frac{x^{5}+x y^{2}}{y^{2}+x^{4}}
$$

The initial condition for each of the above equations is $y(1)=1$.

ADDITIONAL SHEET FOR PROBLEM 1 ANSWER

Problem 2

(4 points each) Calculate the circulation counterclockwise of the following vector field in the plane

$$
\vec{V}(x, y)=\left(e^{x} \sin \left(e^{x}\right)+x^{3}-2+y\right) \overrightarrow{\mathbf{i}}+\left(2 x+y \sin (y)+e^{y^{2}}\right) \overrightarrow{\mathbf{j}}
$$

around each of the following curves:
i- The circle of radius $\sqrt{\frac{3}{\pi}}$ centered at $(0,0)$.
ii- The circle of radius $\sqrt{\frac{3}{\pi}}$ centred at $(2,10)$.
iii- The square whose bottom left corner is located at $(3.5,2)$ and whose side length is equal to $\sqrt{3}$.
iv- The square whose area is equal to 3 and whose top right corner is located at $(100,100)$.
v- The equilateral triangle whose vertices are $(0,0),(2 \sqrt[4]{3}, 0),(\sqrt[4]{3}, \sqrt[4]{27})$.

Hint: There is a shortcut.

Problem 3

(20 points) Consider the vector field

$$
\vec{F}(x, y, z)=(\cos (y-1)) \overrightarrow{\mathbf{i}}+\left(3 x^{2} y^{3}\right) \overrightarrow{\mathbf{j}}+(2 x-1) \overrightarrow{\mathbf{k}}
$$

as well as the cube whose eight vertices are located at the following points:

$$
(1,1,-1),(-1,1,-1),(1,-1,-1),(-1,-1,-1),(1,1,1),(-1,1,1),(1,-1,1),(-1,-1,1) .
$$

Calculate the flux of $\vec{F}(x, y, z)$ through the surface S which consists of the top face of the cube (the one satisfying $z=1$) as well as the four side faces (i.e. the ones satisfying $\mathrm{x}=1, \mathrm{y}=1, \mathrm{x}=-1$, $\mathrm{y}=-1$). In other words calculate the flux of $\vec{F}(x, y, z)$ through the surface obtained from the cube by removing its bottom face. Choose the orientation where the unit normal vector points away from the origin.

Problem 4

(10 points) Consider the IVP

$$
y^{\prime}=y^{2}-x \quad, \quad y(0)=0
$$

Show that if $y(x)$ is a solution of the above IVP then

$$
y(x)+\frac{x^{2}}{2} \geq 0
$$

Hint: It can be shown that $y(x)$ cannot be written in closed form in terms of the elementary functions, so don't waste your time trying to find a formula for it.

