## American University of Beirut

1.Solve The DE

$$
\frac{d y}{d x}=\frac{y-x}{y+x}
$$

2. Find an integrating factor and use it to solve the following IVP

$$
(2 y 2+3 x+6) d x+2 x y d y=0, y(1)=1
$$

3.Solve the following IVP

$$
\begin{aligned}
& \mathrm{x} \frac{d y}{d x}+\mathrm{y}=\mathrm{y} 2 \mathrm{f}(\mathrm{x}), \mathrm{y}(1)=1 \\
& \mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}
x^{2}, 1 \leq x \leq \frac{3}{2} \\
0, \frac{3}{2}<x<2
\end{array}\right.
\end{aligned}
$$

4.In this problem the indicated function $\mathrm{y} 1(\mathrm{x})$ is a solution of the given differentail equation. Use reduction of order to find a second non-trivial solution $\mathrm{y} 2(\mathrm{x})$, and then compute the Wornskain W(y1,y2)

$$
x y^{\prime \prime}+y^{\prime}=0 ; y_{1}=\ln x
$$

5.In this problem you may use the fact that the area of an ellipse of equation $\frac{u^{2}}{p^{2}}+\frac{v^{2}}{q^{2}}=1$, is $\pi \mathrm{pq}$.
Let $\mathbf{S}$ be the part of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ in the first quadrant.[The "curved traingular surface $A B C$ in the figure]. Let $D$ be the solid, in the first octant, bounded by $S$ and the coordinate planes, $\mathrm{x}=0, \mathrm{y}=0$, and $\mathrm{z}=0$.
(a) What are the outward unit normals to the four faces OAB,OBC,OCA, and ABC of the solid D?
Use the vector field $\mathrm{F}=\mathrm{i}+\mathrm{j}+\mathrm{k}$ and the divergence theorem to evalute the surface integral

$$
\iint_{S} \frac{\frac{x}{a^{2}}+\frac{y}{b^{2}}+\frac{z}{c^{2}}}{\sqrt{\left(\frac{x}{a^{2}}\right)^{2}+\left(\frac{y}{b^{2}}\right)^{2}+\left(\frac{z}{c^{2}}\right)^{2}}} d \sigma
$$

(b) If $L$ is the path made up of the arc $A B$,followed by the $\operatorname{arc} B C$,followed by the arc CA, evalute the line integral $\int_{l} F . d r$

