American University of Beirut MATH 202

Differential Equations Spring 2007

$$quiz \ \# \ 1$$

- **1.** Integrate $f(x,y) = (x+y^2)/\sqrt{1+x^2}$ along the curve $C: y = \frac{x^2}{2}$ from (1,1/2) to (0,0)
- 2. Find the counterclockwise circulation and outward flux of the field $F(x, y) = xy\mathbf{i} + y^2\mathbf{j}$ around and across the boundary of the region enclosed by the curves $y = x^2$ and y = x in the first quadrant
- **3.** Integrate the function H(x, y, z) = yz over the part of the sphere $x^2 + y^2 + z^2 = 4$ that lies above the cone $z = \sqrt{x^2 + y^2}$
- 4. Use an appropriate parametrization of the cone $z = \sqrt{x^2 + y^2}$, $0 \le z \le 1$, to evaluate the surface integral

$$\int \int_{S} y^2 d\sigma$$

- **5.** Solve the **IVP**: $y'(1 + x^2) + xy = 0$, y(0) = 1
- 6. Solve the IVP: $xy' + 3y = x^2$, y(1) = 2/5