

Math 202 Final Examination A, February 12, 2002 F. Abi-Khuzam

- **1**. (20 points)
 - (a) (10 points) Find the inverse Laplace transform of $\frac{s+1}{(s+2)(s^2+9)}$.
 - **(b)** (10 points) Solve the integral equation: $y(t) = e^{-t} 3t^2 + \int_0^t y(\tau)e^{t-\tau}d\tau$.
- 2. (30 points) Use Laplace transforms to solve the problem:

$$y'' + 6y' + 18y = \mathcal{U}(t-2) + \delta(t-4), \ y(0) = 0, y'(0) = 1.$$

Here δ is the Dirac delta-function, and $\mathcal U$ is the unit step function.

3. (30 points)

5+3/4

a. (15 points) Find all eigenvalues and corresponding eigenvectors for the matrix

$$A = \begin{pmatrix} 1 & 4 & 3 \\ 0 & 0 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$

Verify your answers by showing they satisfy the definitions of eigenvalue and eigenvector.

$$x' = x + 4y + 3z$$

b. (15 points) Find the solution of the problem y' = z, where z' = 2y' + z

- x(0) = 1, y(0) = 0, z(0) = 1.4. (15 points) Solve the equation: $\frac{dy}{dx} = y(xy^3 - 1).$
- **5.** (25 points) Find the general solution of the differential equation:

$$y^{(5)} + y^{(4)} - y^{(3)} + 7y'' - 20y' + 12y = 16 + 12x.$$

- **6**. (30 points)
 - **a.** (20 points) Let $y = \sum_{n=0}^{\infty} c_n x^n$ be a solution of the differential equation $y' 5x^4y = 3x^9$, satisfying y(0) = 1. Find c_n as a function of n, then find y and express it, as far as possible, in closed form.
 - **b.** (10 points) Solve the differential equation in part (a) directly, without the use of power series.
- **2.** (10 points) If J_1 and J_0 are Bessel functions of the first kind of orders 1 and 0 respectively, prove that $(xJ_1(x))' = xJ_0(x)$.

