FINAL EXAMINATION, MATH 202

June 8, 2005; 3:00-5:00 P.M.

Name:

Number:

1. Instructions:

- No calculators are allowed.
- There are two types of questions: PART I consists of seven subjective questions, and PART II consists of five multiple-choice questions of which each has exactly one correct answer.
- Give detailed solutions for the problems of PART I in the provided space and circle the appropriate answers for the problems of PART II.

2. Grading policy:

- 10 points for each of the problems of PART I.
- 5 points for each correct answer of PART II.
- 0 point for no answer or more than one answer of PART II.

GRADE OF PART I:
GRADE OF PART II:
TOTAL GRADE:

Part I(1). Find the general solution of the system $X^{\prime}=A X$ where

$$
A=\left(\begin{array}{ccc}
7 & -2 & 4 \\
-4 & 0 & -2 \\
0 & 0 & -1
\end{array}\right)
$$

(2). Find the general solution of the differential equation

$$
y^{\prime \prime}+y=2 \sin x+5 e^{2 x} .
$$

Part I(3). Use Laplace transform to solve the initial value problem

$$
t y^{\prime \prime}-y^{\prime}=t^{2}, \quad y(0)=0
$$

Part I(4). Find the general solution of the differential equation

$$
\left[\frac{x}{\sqrt{x^{2}+y^{2}}}-\frac{y}{x^{2}}\right] d x+\left[\frac{y}{\sqrt{x^{2}+y^{2}}}+\frac{1}{x}\right] d y=0
$$

Part $\mathbf{I}(5)$. Show that $y=\sqrt{x} J_{\nu}(x)$ is a solution for the differential equation

$$
x^{2} y^{\prime \prime}+\left(x^{2}-\nu^{2}+\frac{1}{4}\right) y=0 .
$$

Part $\mathbf{I}(6)$. Solve the differential equation

$$
x^{2} y^{\prime}+2 x y=y^{3} \text {. }
$$

Part I(7). Find the general solution of the differential equation

$$
x^{2} y^{\prime \prime}-x y^{\prime}+y=4 x \ln x, \quad x>0 .
$$

Part II: Multiple Choice Problems.

Part II(1). The solution of the initial-value problem

$$
y^{\prime}(t)=\cos t+\int_{0}^{t} y(\tau) \cos (t-\tau) d \tau, \quad y(0)=1
$$

satisfies
(a) $y(2)=2$.
(b) $y(2)=3$.
(c) $y(2)=4$.
(d) $y(2)=5$.
(e) None of the above.

Part II(2).

$$
\mathcal{L}^{-1}\left\{e^{-2 s}+\ln \left(\frac{s-1}{s+1}\right)\right\} .
$$

(a) $\delta(t-2)+\left(e^{t}-e^{-t}\right) / t$.
(b) $\delta(t-2)-\left(e^{t}-e^{-t}\right) / t$.
(c) $\delta(t+2)+\left(e^{t}-e^{-t}\right) / t$.
(d) $\delta(t+2)-\left(e^{t}-e^{-t}\right) / t$.
(e) None of the above.

Part II(3). The indicial roots of the differential equation

$$
2 x y^{\prime \prime}-\left(1+2 x^{2}\right) y^{\prime}-x y=0
$$

are
(a) $-1,3 / 2$.
(b) $0,-3 / 2$.
(c) $1,2 / 3$.
(d) $0,3 / 2$.
(e) None of the above.

Part II(4). Knowing that the differential equation

$$
2 x^{2} y^{\prime \prime}-3 x y^{\prime}+(3+x) y=0
$$

has a regular singular point at $x=0$ with an indicial root r, then an application of Frobenius method to find the associated series solution $\sum_{n=0}^{\infty} c_{n} x^{n+r}$ yields for the coefficients $c_{n}, n \geq 1$ the recurrence relation
(a) $c_{n}=c_{n-1} /[(n+r-1)(2 n+2 r-3)]$.
(b) $c_{n}=-c_{n-1} /[(n+r-1)(2 n+2 r+3)]$.
(c) $c_{n}=-c_{n-1} /[(n+r-1)(2 n+2 r-3)]$.
(d) $c_{n}=c_{n-1} /[(n+r+1)(2 n+2 r-3)]$.
(e) None of the above.

Part II(5). The solution of the initial-value problem

$$
y^{\prime}+1=e^{-(x+y)} \sin x, \quad y(0)=0,
$$

passes through the point
(a) $(x=\pi / 2, y=-\pi / 2+\ln 2)$.
(b) $(x=\pi / 2, y=\pi / 2+\ln 2)$.
(c) $(x=\pi / 2, y=-\pi / 2-\ln 2)$.
(d) $(x=\pi / 2, y=\pi / 2-\ln 2)$.
(e) None of the above.

Part II(6). Answer TRUE (T) or (FALSE) only:
(a) - The Gamma function is defined by

$$
\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t, x>0
$$

(b) - The convolution of functions f and g on $[0, \infty)$ is defined by

$$
(f * g)(t)=\int_{0}^{t} f(t) g(\tau+t) d \tau
$$

(c) - Bessel's function of the first kind of order ν is defined by

$$
J_{\nu}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(\nu+n)}\left(\frac{x}{2}\right)^{2 n+\nu}
$$

(d) - If m is a positive integer and J_{m} is Bessel's function of the first kind of order m, then $J_{-m}=(-1)^{m} J_{m}$.
(e) -- Picard's theorem guarantees a unique solution for the initial value problem

$$
\frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

if f and f_{x} are continuous functions in some open rectangle containing $\left(x_{0}, y_{0}\right)$.

