Name:
Number:

1. Instructions:

Signature:
Section: 13, 14, 15, 16

- No calculators are allowed.
- There are two types of questions: PART I consists of SIX subjective questions, and PART II consists of EIGHT multiplechoice questions of which each has exactly one correct answer.
- Give detailed solutions for the problems of PART I in the provided space.
- 10 points for each question of PART I.
- Circle one answer for each question of PART II.
- 5 points for each correct answer of PART II.
- 0 point for no answer or more than one answer of PART II.

GRADE OF PART I	$/ 60$
GRADE OF PART II	$/ 40$
TOTAL GRADE	$/ 100$

Part I(1). solve, without using Laplace transforms, the initial-value problem

$$
\begin{aligned}
& \frac{d x}{d t}=2 x+4 y \\
& \frac{d y}{d t}=-x+6 y
\end{aligned}
$$

with initial conditions $x(0)=-1, y(0)=6$.

Part I(2). Use Laplace transforms to find the solution of the initialvalue problem

$$
y^{\prime \prime}+y=f(t), \quad f(t)=\left\{\begin{array}{cc}
1, & 0 \leq t<\pi / 2 \\
0, & \pi / 2 \leq t \leq \infty
\end{array} \quad, \quad y(0)=1, y^{\prime}(0)=0 .\right.
$$

Part I(3). Use the substitution $u=\sqrt{x} y$ to find the general solution of the differential equation

$$
\frac{d^{2} u}{d x^{2}}+\left(1-\frac{\nu^{2}-1 / 4}{x^{2}}\right) u=0, \quad x>0 .
$$

Part I(4). Show that the differential equation

$$
4 x^{2} y^{\prime \prime}-2 x(x-2) y^{\prime}-(3 x+1) y=0
$$

has a regular point and indicial roots $r_{1} / 2$ and $r_{2}=-1 / 2$ at $x=0$, and use Frobenius method to find a series solution about $x=0$ associated with $r_{1}=1 / 2$.

Extra Page

Part I(5). Find the general solution of the differential equation

$$
x \frac{d y}{d x}=(1+x) y+x y^{2} .
$$

by an appropriate substitution.

Part I(6). Find the general solution of the differential equation

$$
x^{2} y^{\prime \prime}-x y^{\prime}+y=x^{3}, \quad x>0 .
$$

Part II: Multiple Choice Problems.

Part II(1). The solution of the initial-value problem

$$
y^{\prime}(t)=1-\sin t-\int_{0}^{t} y(\tau) d \tau, \quad y(0)=0
$$

satisfies
(a) $y(t)=\cos t+\sin t * \cos t$.
(b) $y(t)=\cos t-\sin t * \cos t$.
(c) $y(t)=\sin t+\sin t * \cos t$.
(d) $y(t)=\sin t-\sin t * \cos t$.
(e) None of the above.

Part II(2).

$$
\mathcal{L}^{-1}\left\{\frac{e^{-s}}{s^{2}}+\tan s\right\}=
$$

(a) $(t+1) \mathcal{U}(t+1)+(\sin t) / t$.
(b) $(t-1) \mathcal{U}(t-1)-(\sin t) / t$.
(c) $(t-1) \mathcal{U}(t-1)-(\cos t) / t$.
(d) $(t+1) \mathcal{U}(t+1)-(\sin t) / t$.
(e) None of the above.

Part II(3). The solution of the initial-value problem

$$
\frac{d y}{d x}=-\frac{1}{2}(x+y-1)^{3}-1, \quad y(1)=1,
$$

satisfies
(a) $y(4)=-5 / 2$.
(b) $y(4)=5 / 2$.
(c) $y(3)=5 / 2$.
(d) $y(3)=-5 / 2$.
(e) None of the above.

Part II(4). The solution of the initial-value problem

$$
\left[\frac{\sin 2 x}{y}+x\right] d x+\left[y-\frac{\sin ^{2} x}{y^{2}}\right] d y, \quad y(0)=1,
$$

is given implicitly by the equation $x^{2} y+2 \sin ^{2} x=h(y)$, where
(a) $h(1)=0$.
(b) $h(1)=2$.
(c) $h(1)=4$.
(d) $h(1)=6$.
(e) None of the above.

Part II(5). The differential equation

$$
\left(x^{2}+1\right) y^{\prime \prime}-4 x y^{\prime}+6 y=0
$$

has an ordinary point at $x=0$ and two power series solutions $\sum_{n=0}^{\infty} c_{n} x^{n}$, whose coefficients $c_{n}, n=0,1,2, \cdots$, satisfy the recurrence relation
(a) $c_{n+2}=\frac{(n-2)(n-3)}{(n+1)(n+2)} c_{n}, \quad n=0,1,2, \cdots$.
(b) $c_{n+2}=-\frac{(n-2)(n-3)}{(n+1)(n+2)} c_{n}, \quad n=0,1,2, \cdots$.
(c) $c_{n+2}=-\frac{(n-3)(n-4)}{(n+1)(n+2)} c_{n}, \quad n=0,1,2, \cdots$.
(d) $c_{n+2}=\frac{(n-1)(n-2)}{(n+1)(n+2)} c_{n}, \quad n=0,1,2, \cdots$.
(e) None of the above.

Part II(6). The solution of the initial-value problem

$$
\left[x \cos ^{2}\left(\frac{y}{x}\right)-y\right] d x+x d y=0, \quad y(1)=\frac{\pi}{4}
$$

satisfies
(a) $y\left(e^{-2}\right)=0$.
(b) $y\left(e^{-1}\right)=0$.
(c) $y(e)=0$.
(d) $y\left(e^{2}\right)=0$.
(e) None of the above.

Part II(7). Answer TRUE (T) or (FALSE) only:
(a) - The Laplace transform of a function f is

$$
\mathcal{L}(f(t))=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

(b) - The convolution of functions f and g on $[0, \infty)$ is defined by

$$
(f * g)(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

(c) - The general solution of the parametric Bessel equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(\lambda^{2} x^{2}-\nu^{2}\right) y=0
$$

is $y=c_{1} J_{\nu}(\lambda x)+c_{2} Y_{\nu}(\lambda x)$.
(d) - If the set of two functions f_{1} and f_{2} is linearly independent on an interval I, then the Wronskian $W\left(f_{1}, f_{2}\right) \neq 0$ for all $x \in I$.
(e) -- The initial-value problem $d y / d x=\sqrt{y}, y\left(x_{0}\right)=y_{0}$ has no solution for $y_{0}<0$.

Part II(8). If $y_{1}=(\sin x) / x$ is one solution of the differential equation,

$$
x y^{\prime \prime}+2 y^{\prime}+x y=0
$$

then the solution of the associated boundary-value problem with boundary conditions $y(\pi / 2)=0$ and $y(\pi)=1 / 2$ satisfies
(a) $y(\pi / 4)=-\sqrt{2}$.
(b) $y(\pi / 4)=\sqrt{2}$.
(c) $y(\pi / 4)=-\sqrt{2} / 2$.
(d) $y(\pi / 4)=\sqrt{2} / 2$.
(e) None of the above.

