Reminder: Final Exam for Sections 5-8 at 8:00 AM on 7th June 2006 in WHCR

A series solution or an explicit solution is accepted for full credit if and only if this is indicated in the problem.
You may use any method you like to find a solution.
For full credit you need to state your result clearly!

1. Solve the differential equation $\left.\left(y^{\prime}\right)^{3}=-x^{3} y /\left(1+x^{2}\right)^{5}\right)$.
2. Find a solution $y=y(x)$ of $y^{\prime}=1+\sqrt{x+y}$. It suffices to find an implicit solution.
3. Find the general solution $y=y(x)$ of

$$
y^{\prime \prime \prime}+y^{\prime}=\cos (x) .
$$

4. Find the general solution of

$$
y^{\prime \prime}-4 y^{\prime}+3 y=\frac{1}{1+e^{-2 x}}
$$

5. Find the solution $y=y(x)$ of

$$
y^{\prime \prime}+\left(2+x+x^{2}\right) y^{\prime}+y=0 \quad \text { with } \quad y(0)=3 \quad \text { and } \quad y^{\prime}(0)=5 .
$$

It suffices to specify a power series solution here. For full credit, give a complete recursive definition of the coefficients of your series. Compute the first 3 coefficients explicitely.
6. Let $\left(y_{1}, y_{2}\right)=\left(y_{1}(t), y_{2}(t)\right)$ be the solution of

$$
\begin{aligned}
& y_{1}^{\prime}=y_{1}+y_{2}+t \\
& y_{2}^{\prime}=-y_{1}+2 y_{2}
\end{aligned}
$$

with $y_{1}(0)=y_{2}(0)=1$. Compute $y_{2}(t)$ for $t \geq 0$.
7. Find the inverse Laplace transforms of

$$
\frac{s+5}{s\left(s^{2}+s+21\right)} \quad \text { and } \quad \arctan \left(\frac{2}{s-7}\right)
$$

8. Find the solution $Y=Y(t)=\left(y_{1}(t), y_{2}(t)\right)$ of the differential equation

$$
Y^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad Y \quad \text { with } \quad Y(0)=\binom{1}{1}
$$

For full credit you must find an explicit formula for the coefficients $y_{1}(t), y_{2}(t), y_{3}(t)$.
9. Find the solution $Y=Y(t)=\left(y_{1}(t), y_{2}(t), y_{3}(t)\right)$ of the differential equation

$$
Y^{\prime}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 7
\end{array}\right) \quad Y \quad \text { with } \quad Y(0)=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

For full credit you must find an explicit formula for the coefficients $y_{1}(t), y_{2}(t), y_{3}(t)$.
10. Find the eigenvalues and eigenvectors of

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right)
$$

What is the general solution of $Y^{\prime}=A Y, Y=Y(t)=\left(y_{1}(t), y_{2}(t)\right)$.

