MATHEMATICS 202
SECOND SEMESTER, 2004-05
QUIZ 1

Time: 55 MINUTES.

Date: March 23, 2005.
Name:
ID Number:
Circle Problem Session Instructor: Dr. A.Lyzzaik, Dr. H. Yamani
Circle Section Number: 15, 16, 17, 18, 19

GRADE:

1.
2.
3.
4.
5.
6.

Total:
/50

1. Solve the initial-value problem

$$
\frac{d y}{d x}=1+e^{y-x+5}, \quad y(6)=1
$$

2. Solve the differential equation

$$
x^{2} \frac{d y}{d x}-2 x y=3 y^{4}
$$

3. Solve the initial value problem

$$
\left(x^{2}+y^{2}+x y\right) d x-x y d y=0 \quad y(1)=e-1
$$

4. Find the general solution of the differential equation

$$
4 x^{2} y^{\prime \prime}+y=0
$$

for $x>0$ if one of the solutions is $y_{1}=x^{1 / 2} \ln x$.
5. Find the general solution of the differential equation

$$
y^{\prime \prime \prime}+6 y^{\prime \prime}+y^{\prime}-34 y=0 .
$$

6. Answer TRUE (T) or FALSE (F) only:
(a) - The set of functions $\left\{x^{2}, x|x|\right\}$ on $]-\infty, \infty[$ is linearly independent.
(b) \quad An initial-value problem

$$
\frac{d y}{d x}=f(x, y), y\left(x_{0}\right)=y_{0}
$$

has a unique solution if $f(x, y)$ and $f_{x}(x, y)$ are continuous in the $x y$-plane. (2 points)
(c) linearly independent if and only if the Wronskian $W\left(y_{1}, y_{2}\right)$ is nonzero at some $x \in]-\infty, \infty[$.
(d) - The initial-value problem

$$
\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime}+y=0 y(0)=y^{\prime}(0)=0
$$

has the unique solution $y=0$ on $]-\infty, \infty[$.
(2 points)
(e) - The differential equation

$$
\left(\cos x \sin x-x y^{2}\right) d x+y\left(1-x^{2}\right)=0
$$

is exact.

