MATHEMATICS 202

SPRING SEMESTER 2006-2007 QUIZ I

Time: 80 MINUTES.
Date: March 26, 2007.
Name:
ID Number:
Section Number:
Course Instructors: Professors A. Lyzzaik and H. Yamani

Question	Grade
1	$/ 14$
2	$/ 14$
3	$/ 14$
4	$/ 14$
5	$/ 14$
6	$/ 100$
7	
TOTAL	$/ 14$

Answer The Following Seven Questions On The Page Allocated For Each Question (You May Use The Back Of The Pages If Needed).

1. Show that the differential equation

$$
(-x y \sin x+2 y \cos x) d x+2 x \cos x d y=0
$$

is not exact. Multiply the equation by an appropriate integrating factor $\mu(x, y)=x^{m} y^{n}$ that makes the differential equation exact, then solve. (14 points)

Solution. Since

$(-x y \sin x+2 y \cos x)_{y}=-x \sin x+2 \cos x \neq 2 \cos x-2 x \sin x=(2 x \cos x)_{x}$, the differential equation is not exact.

Multiply both sides of the differential equation by $\mu(x, y)=x^{m} y^{n}$ to obtain

$$
\left(-x^{m+1} y^{n+1} \sin x+2 x^{m} y^{n+1} \cos x\right) d x+2 x^{m+1} y^{n} \cos x d y=0
$$

For this equation to be exact we must have

$$
\left(-x^{m+1} y^{n+1} \sin x+2 x^{m} y^{n+1} \cos x\right)_{y}=\left(2 x^{m+1} y^{n} \cos x\right)_{x}
$$

or
$-(n+1) x^{m+1} y^{n} \sin x+2(n+1) x^{m} y^{n} \cos x=2(m+1) x^{m} y^{n} \cos x-2 x^{m+1} y^{n} \sin x$.
This implies that $m=n=1$. Hence the differential equation

$$
\left(-x^{2} y^{2} \sin x+2 x y^{2} \cos x\right) d x+2 x^{2} y \cos x d y=0
$$

is exact. Let

$$
f_{x}=-x^{2} y^{2} \sin x+2 x y^{2} \cos x \quad \text { and } \quad f_{y}=2 x^{2} y \cos x .
$$

Then

$$
f(x, y)=\int 2 x^{2} y \cos x d y=x^{2} y^{2} \cos x+g(x)
$$

Hence,

$$
2 x y^{2} \cos x-x^{2} y^{2} \sin x+g^{\prime}(x)=f_{x}=-x^{2} y^{2} \sin x+2 x y^{2} \cos x
$$

which yields $g^{\prime}(x)=0$. Hence, $f(x, y)=x^{2} y^{2} \cos x$ and the general solution is

$$
x^{2} y^{2} \cos x=c
$$

for any constant c.
2. Solve the initial-value problem

$$
x^{2} \frac{d y}{d x}-2 x y=3 y^{4}, \quad y(1)=1 / 2 .
$$

Solution. Write the differential equation as

$$
\frac{d y}{d x}-\frac{2}{x} y=\frac{3}{x^{2}} y^{4} .
$$

This it is a Bernoulli's differential equation. Then write the differential equation as

$$
y^{-4} \frac{d y}{d x}-\frac{2}{x} y^{-3}=\frac{3}{x^{2}} .
$$

Letting $u=y^{-3}$ yields

$$
\frac{d u}{d x}=-3 y^{-4} \frac{d y}{d x} \quad \text { or } \quad y^{-4} \frac{d y}{d x}=\frac{-1}{3} \frac{d u}{d x} .
$$

Then substitution in the latter differential equation yields

$$
\frac{-1}{3} \frac{d u}{d x}-\frac{2}{x} u=\frac{3}{x^{2}},
$$

or

$$
\frac{d u}{d x}+\frac{6}{x} u=-\frac{9}{x^{2}}
$$

An integrating factor for this equation is

$$
\mu(x)=e^{\int(6 / x) d x}=x^{6} .
$$

Multiplying the latter differential equation by μ yields

$$
x^{6} \frac{d u}{d x}+6 x^{5} u=-9 x^{4} \quad \text { or } \quad \frac{d}{d x}\left(x^{6} u\right)=-9 x^{4} .
$$

Now integration of both sides gives

$$
x^{6} u=-\frac{9}{5} x^{5}+c \quad \text { or } \quad y^{-3}=-\frac{9}{5} x^{-1}+c x^{-6} .
$$

But $y(1)=1 / 2$ gives $8=-9 / 5+c$, or $c=9 / 5$. Therefore, the solution for the IVP is

$$
y^{-3}=-\frac{9}{5} x^{-1}+\frac{49}{5} x^{-6} .
$$

3. Solve the initial-value problem

$$
\left(\frac{y}{x}-\frac{x^{2}}{y^{2}}\right) d x-d y=0, \quad y(1)=2 .
$$

Solution. Write the differential equation as

$$
\left(y^{3}-x^{3}\right) d x-x y^{2} d y=0
$$

Thus this is a homogeneous differential equation. If

$$
y=u x, \quad \text { then } \quad d y=u d x+x d u .
$$

Then substitution in the latter differential equation yields

$$
x^{3}\left(u^{3}-1\right) d x-x^{3} u^{2}(u d x+x d u)=0,
$$

or

$$
\left(u^{3}-1\right) d x-u^{2}(u d x+x d u)=0,
$$

or

$$
d x+x u^{2} d u=0 .
$$

Write this differential equation as

$$
u^{2} d u+\frac{d x}{x}=0
$$

then integrate both sides to obtain

$$
\frac{1}{3} u^{3}+\ln |x|=c, \quad \text { or } \quad \frac{y^{3}}{3 x^{3}}+\ln |x|=c .
$$

But $y(1)=2$ yields $c=8 / 3$. Therefore, the solution for the IVP is

$$
y^{3}+3 x^{3} \ln |x|=8 x^{3} .
$$

4. Solve the initial-value problem
(14 points)

$$
\frac{d y}{d x}=e^{x+y}+e^{-x-y}-1, \quad y(0)=0
$$

Determine the largest interval of definition of the solution.
Solution. If $u=x+y$, then

$$
\frac{d u}{d x}=1+\frac{d y}{d x}, \quad \text { or } \quad \frac{d y}{d x}=\frac{d u}{d x}-1
$$

Then substitution in the differential equation yields

$$
\frac{d u}{d x}-1=e^{u}+e^{-u}-1, \quad \text { or } \quad \frac{d u}{d x}=e^{u}+e^{-u} .
$$

Write this differential equation as

$$
\frac{e^{u}}{e^{2 u}+1} d u=d x
$$

then integrate both sides to obtain

$$
\arctan e^{u}=x+c, \quad \text { or } \quad e^{x+y}=\tan (x+c) .
$$

But $y(0)=0$ yields $c=\pi / 4$. Therefore, the solution for the IVP is

$$
e^{x+y}=\tan (x+\pi / 4), \text { or } y=\ln (\tan (x+\pi / 4))-x \text {. }
$$

5. Sketch the largest region in the $x y$-plane containing the points $\left(x_{0}, y_{0}\right)$ for which the initial-value problem

$$
\sqrt{1-y^{2}} \frac{d y}{d x}=\sqrt{1+x^{2}}, \quad y\left(x_{0}\right)=y_{0}
$$

possesses a unique solution; justify your answer. Justify your answer.
(14 points)
Solution. Write this differential equation as

$$
\frac{d y}{d x}=\frac{\sqrt{1+x^{2}}}{\sqrt{1-y^{2}}}
$$

and let

$$
f(x, y)=\frac{\sqrt{1+x^{2}}}{\sqrt{1-y^{2}}}
$$

Since f and

$$
f_{y}=\frac{y \sqrt{1+x^{2}}}{\left(1-y^{2}\right)^{3 / 2}}
$$

are continuous functions in the region $R=\{(x, y):|y|<1\}$, by the existence and uniqueness theorem, every initial-value problem

$$
\sqrt{1-y^{2}} \frac{d y}{d x}=\sqrt{1+x^{2}}, \quad y\left(x_{0}\right)=y_{0}
$$

where $\left(x_{0}, y_{0}\right) \in R$ possesses a unique solution. Moreover, since f is not defined whenever $y= \pm 1, R$ is largest desired region.
6. Use Stoke's theorem to evaluate the circulation of the vector field

$$
\mathbf{F}(x, y, z)=-y \mathbf{i}+x^{2} \mathbf{j}+z^{3} \mathbf{k}
$$

along the curve C which is the intersection of the circular cylinder $x^{2}+$ $y^{2}=4$ and the plane $x+z=3$, and which is traversed counterclockwise when viewed from high up on the positive z-axis.
(14 points)
Solution. By Stoke's theorem to evaluate the circulation of the given vector field is given by

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s=\iint_{R} \nabla \times \mathbf{F} \cdot \mathbf{n} d \sigma
$$

where R is the disc $x^{2}+y^{2}=4, \mathbf{n}$ and $d \sigma$ are the unit surface normal and the surface area differential for the given surface. Thus,

$$
\mathbf{n}=\frac{\nabla(x+z-3)}{|\nabla(x+z-3)|}=\frac{\mathbf{i}+\mathbf{k}}{\sqrt{2}}
$$

and

$$
d \sigma=\frac{|\nabla(x+z-3)|}{|\nabla(x+z-3) \cdot \mathbf{k}|} d A=\sqrt{2} d A .
$$

But

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
-y & x^{2} & z^{3}
\end{array}\right|=(2 x+1) \mathbf{k}
$$

Therefore, the desired circulation is

$$
\begin{aligned}
\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d \sigma & =\iint_{R}(2 x+1) \mathbf{k} \cdot \frac{\mathbf{i}+\mathbf{k}}{\sqrt{2}} \sqrt{2} d A \\
& =\iint_{R}(2 x+1) d A \\
& =\int_{0}^{2 \pi} \int_{0}^{2}(2 r \cos \theta+1) r d r d \theta \\
& =\int_{0}^{2 \pi}\left[2 r^{3} \cos \theta / 3+r^{2} / 2\right]_{0}^{2} d \theta=\int_{0}^{2 \pi}[16 \cos \theta / 3+2] d \theta \\
& =[16 \sin \theta / 3+2 \theta]_{0}^{2 \pi}=4 \pi .
\end{aligned}
$$

7. Evaluate in two different ways the flux of the vector field

$$
\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}
$$

across the surface S which is the portion of the paraboloid $z=4-x^{2}-y^{2}$ above the $x y$-plane (\mathbf{n} is upward-oriented so that its z-component is positive).
(16 points)
Solution. By taking $z=0$ in the equation of the paraboloid, we conclude that the paraboloid meets the $x y$-plane in the circle $x^{2}+y^{2}=$ 4. The desired flux is given by $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$, where $d \sigma$ is the surface area differential for the paraboloid and

$$
\mathbf{n}=\frac{\nabla\left(x^{2}+y^{2}+z-4\right)}{\left|\nabla\left(x^{2}+y^{2}+z-4\right)\right|}=\frac{2 x \mathbf{i}+2 y \mathbf{j}+\mathbf{k}}{\sqrt{4 x^{2}+4 y^{2}+1}} .
$$

Thus the flux is

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iint_{S} \frac{x^{2}+y^{2}+4}{\sqrt{4 x^{2}+4 y^{2}+1}} d \sigma
$$

Now we find $d \sigma$ in two ways:
(a)

$$
d \sigma=\frac{\left|\nabla\left(x^{2}+y^{2}+z-4\right)\right|}{\left|\nabla\left(x^{2}+y^{2}+z-4\right) \cdot \mathbf{k}\right|} d A=\left(4 x^{2}+4 y^{2}+1\right) d A .
$$

In this case, the flux is

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma & =\iint_{R}\left(x^{2}+y^{2}+4\right) d A \\
& =\int_{0}^{2 \pi} \int_{0}^{2}\left(r^{2}+4\right) r d r d \theta \\
& =16 \pi
\end{aligned}
$$

(b) $d \sigma=\left|\mathbf{r}_{r} \times \mathbf{r}_{\theta}\right| d r d \theta$, where

$$
\mathbf{r}(r, \theta)=(r \cos \theta) \mathbf{i}+(r \sin \theta) \mathbf{j}+\left(4-r^{2}\right) \mathbf{k} .
$$

Then

$$
\mathbf{r}_{r} \times \mathbf{r}_{\theta}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\cos \theta & \sin \theta & -2 r \\
-r \sin \theta & r \cos \theta & 0
\end{array}\right|,
$$

and

$$
\mathbf{r}_{r} \times \mathbf{r}_{\theta}=\left(2 r^{2} \cos \theta\right) \mathbf{i}+\left(2 r^{2} \sin \theta\right) \mathbf{j}+r \mathbf{k} .
$$

Thus, $d \sigma=\sqrt{4 r^{4}+r^{2}} d r d \theta=\sqrt{4 r^{2}+1} r d r d \theta$. The rest of the work goes as in (a).

