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1. Show that the differential equation

(−xy sin x + 2y cos x) dx + 2x cos x dy = 0

is not exact. Multiply the equation by an appropriate integrating factor
µ(x, y) = xmyn that makes the differential equation exact, then solve.

(14 points)
Solution. Since

(−xy sin x+2y cos x)y = −x sin x+2 cos x 6= 2 cos x−2x sin x = (2x cos x)x,

the differential equation is not exact.
Multiply both sides of the differential equation by µ(x, y) = xmyn to

obtain

(−xm+1yn+1 sin x + 2xmyn+1 cos x) dx + 2xm+1yn cos x dy = 0.

For this equation to be exact we must have

(−xm+1yn+1 sin x + 2xmyn+1 cos x)y = (2xm+1yn cos x)x

or

−(n+1)xm+1yn sin x+2(n+1)xmyn cos x = 2(m+1)xmyn cos x−2xm+1yn sin x.

This implies that m = n = 1. Hence the differential equation

(−x2y2 sin x + 2xy2 cos x) dx + 2x2y cos x dy = 0

is exact. Let

fx = −x2y2 sin x + 2xy2 cos x and fy = 2x2y cos x.

Then

f(x, y) =
∫

2x2y cos x dy = x2y2 cos x + g(x).

Hence,

2xy2 cos x− x2y2 sin x + g′(x) = fx = −x2y2 sin x + 2xy2 cos x

which yields g′(x) = 0. Hence, f(x, y) = x2y2 cos x and the general
solution is

x2y2 cos x = c

for any constant c.
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2. Solve the initial-value problem (14 points)

x2 dy

dx
− 2xy = 3y4, y(1) = 1/2.

Solution. Write the differential equation as

dy

dx
− 2

x
y =

3

x2
y4.

This it is a Bernoulli’s differential equation. Then write the differential
equation as

y−4 dy

dx
− 2

x
y−3 =

3

x2
.

Letting u = y−3 yields

du

dx
= −3y−4 dy

dx
or y−4 dy

dx
=
−1

3

du

dx
.

Then substitution in the latter differential equation yields

−1

3

du

dx
− 2

x
u =

3

x2
,

or
du

dx
+

6

x
u = − 9

x2
.

An integrating factor for this equation is

µ(x) = e
∫

(6/x)dx = x6.

Multiplying the latter differential equation by µ yields

x6du

dx
+ 6x5u = −9x4 or

d

dx
(x6u) = −9x4.

Now integration of both sides gives

x6u = −9

5
x5 + c or y−3 = −9

5
x−1 + cx−6.

But y(1) = 1/2 gives 8 = −9/5 + c, or c = 9/5. Therefore, the solution
for the IVP is

y−3 = −9

5
x−1 +

49

5
x−6.
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3. Solve the initial-value problem (14 points)(
y

x
− x2

y2

)
dx− dy = 0, y(1) = 2.

Solution. Write the differential equation as

(y3 − x3)dx− xy2 dy = 0.

Thus this is a homogeneous differential equation. If

y = ux, then dy = u dx + x du.

Then substitution in the latter differential equation yields

x3(u3 − 1)dx− x3u2(u dx + x du) = 0,

or
(u3 − 1)dx− u2(u dx + x du) = 0,

or
dx + xu2 du = 0.

Write this differential equation as

u2 du +
dx

x
= 0,

then integrate both sides to obtain

1

3
u3 + ln |x| = c, or

y3

3x3
+ ln |x| = c.

But y(1) = 2 yields c = 8/3. Therefore, the solution for the IVP is

y3 + 3x3 ln |x| = 8x3.
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4. Solve the initial-value problem (14 points)

dy

dx
= ex+y + e−x−y − 1, y(0) = 0.

Determine the largest interval of definition of the solution.
Solution. If u = x + y, then

du

dx
= 1 +

dy

dx
, or

dy

dx
=

du

dx
− 1.

Then substitution in the differential equation yields

du

dx
− 1 = eu + e−u − 1, or

du

dx
= eu + e−u.

Write this differential equation as

eu

e2u + 1
du = dx,

then integrate both sides to obtain

arctan eu = x + c, or ex+y = tan(x + c).

But y(0) = 0 yields c = π/4. Therefore, the solution for the IVP is

ex+y = tan(x + π/4), or y = ln(tan(x + π/4))− x.
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5. Sketch the largest region in the xy−plane containing the points
(x0, y0) for which the initial-value problem√

1− y2
dy

dx
=
√

1 + x2, y(x0) = y0,

possesses a unique solution; justify your answer. Justify your answer.
(14 points)

Solution. Write this differential equation as

dy

dx
=

√
1 + x2

√
1− y2

,

and let

f(x, y) =

√
1 + x2

√
1− y2

.

Since f and

fy =
y
√

1 + x2

(1− y2)3/2

are continuous functions in the region R = {(x, y) : |y| < 1}, by the
existence and uniqueness theorem, every initial-value problem√

1− y2
dy

dx
=
√

1 + x2, y(x0) = y0,

where (x0, y0) ∈ R possesses a unique solution. Moreover, since f is
not defined whenever y = ±1, R is largest desired region.
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6. Use Stoke’s theorem to evaluate the circulation of the vector field

F(x, y, z) = −yi + x2j + z3k

along the curve C which is the intersection of the circular cylinder x2 +
y2 = 4 and the plane x+z = 3, and which is traversed counterclockwise
when viewed from high up on the positive z−axis. (14 points)
Solution. By Stoke’s theorem to evaluate the circulation of the given
vector field is given by∫

C
F ·T ds =

∫ ∫
R
∇× F · n dσ,

where R is the disc x2 + y2 = 4, n and dσ are the unit surface normal
and the surface area differential for the given surface. Thus,

n =
∇(x + z − 3)

|∇(x + z − 3)|
=

i + k√
2

and

dσ =
|∇(x + z − 3)|

|∇(x + z − 3) · k|
dA =

√
2 dA.

But

∇× F =

∣∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
−y x2 z3

∣∣∣∣∣∣∣ = (2x + 1)k

Therefore, the desired circulation is∫ ∫
S
∇× F · n dσ =

∫ ∫
R
(2x + 1)k · i + k√

2

√
2 dA

=
∫ ∫

R
(2x + 1)dA

=
∫ 2π

0

∫ 2

0
(2r cos θ + 1)r dr dθ

=
∫ 2π

0
[2r3 cos θ/3 + r2/2]20dθ =

∫ 2π

0
[16 cos θ/3 + 2]dθ

= [16 sin θ/3 + 2θ]2π
0 = 4π.
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7. Evaluate in two different ways the flux of the vector field

F(x, y, z) = xi + yj + zk

across the surface S which is the portion of the paraboloid z = 4−x2−y2

above the xy−plane (n is upward-oriented so that its z−component is
positive). (16 points)
Solution. By taking z = 0 in the equation of the paraboloid, we
conclude that the paraboloid meets the xy−plane in the circle x2+y2 =
4. The desired flux is given by

∫ ∫
S F · n dσ, where dσ is the surface

area differential for the paraboloid and

n =
∇(x2 + y2 + z − 4)

|∇(x2 + y2 + z − 4)|
=

2xi + 2yj + k√
4x2 + 4y2 + 1

.

Thus the flux is∫ ∫
S
F · n dσ =

∫ ∫
S

x2 + y2 + 4√
4x2 + 4y2 + 1

dσ.

Now we find dσ in two ways:
(a)

dσ =
|∇(x2 + y2 + z − 4)|

|∇(x2 + y2 + z − 4) · k|
dA = (4x2 + 4y2 + 1) dA.

In this case, the flux is∫ ∫
S
F · n dσ =

∫ ∫
R
(x2 + y2 + 4) dA

=
∫ 2π

0

∫ 2

0
(r2 + 4)r dr dθ

= 16π.

(b) dσ = |rr × rθ|drdθ, where

r(r, θ) = (r cos θ)i + (r sin θ)j + (4− r2)k.

Then

rr × rθ =

∣∣∣∣∣∣∣
i j k

cos θ sin θ −2r
−r sin θ r cos θ 0

∣∣∣∣∣∣∣ ,
and

rr × rθ = (2r2 cos θ)i + (2r2 sin θ)j + rk.

Thus, dσ =
√

4r4 + r2 dr dθ =
√

4r2 + 1 rdr dθ. The rest of the work
goes as in (a).


