MATHEMATICS 202
SECOND SEMESTER, 2004-05
QUIZ II

Time: 70 MINUTES.
Date: April 23, 2005.
Name:-

ID Number:

Circle Problem Session Instructor: Dr. A.Lyzzaik, Dr. H. Yamani Circle Section Number: 13, 14, 15, 16

GRADE:

1. $/ 4$
2. $/ 8$
3. $/ 8$
4. $/ 6$
$5 . \quad / 6$
5. $\quad / 10$
6. /8
7. Use the method of undetermined coefficients to find the expected form of a particular solution y_{p} for the differential equation

$$
y^{\prime \prime}-2 y^{\prime}+5 y=e^{x} \cos 2 x .
$$

Caution: Need not find y_{p} explicitly.
2. Use the method of variation of parameters to find the general solution of the differential equation

$$
x^{2} y^{\prime \prime}-x y^{\prime}+y=x^{3} .
$$

3. Solve by the power series method the initial value problem

$$
y^{\prime \prime}-2 x y^{\prime}+8 y=0, \quad y(0)=3, y^{\prime}(0)=0 .
$$

4. Find the general solution of the Bessel-type differential equation

$$
\frac{d}{d x}\left(x y^{\prime}\right)+\left(16 x-\frac{1}{x}\right) y=0 ; \quad x>0 .
$$

5. Use the substitution $x=e^{t}$ to find the general solution of the differential equation

$$
x y^{\prime \prime \prime}-\frac{6}{x^{2}} y=0 ; \quad x>0
$$

(6 points)
6. Show that the differential equation

$$
3 x y^{\prime \prime}+(2-x) y^{\prime}-y=0
$$

has indicial roots $r=0,1 / 3$. Derive the recurrence relation of the coefficients of the series solution of the equation associated with $r=1 / 3$.
($4+6=10$ points)
7. Answer TRUE (T) or FALSE (F) only:
(a) - The differential equation

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0,
$$

has at least one power series solution near a regular singular point x_{0}.
(b) - The differential equation

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0
$$

has a fundamental set of power series solutions near an ordinary point x_{0}.
(2 points)
(c) - The differential equation

$$
\left(x^{3}-2 x^{2}-3 x\right)^{2} y^{\prime \prime}+(x-3)^{2}(\sin x) y^{\prime}-(x+1) y=0
$$

has no irregular singular points.
(2 points)
(d) —— The interval of convergence of series solutions of the differential equation

$$
\left(x^{3}+x\right) y^{\prime \prime}+x y^{\prime}+y=0
$$

about the regular singular point $x=0$ is $] 0, \infty[$.

