MATHEMATICS 202

Time: 70 MINUTES.
Date: April 28, 2007.
Name:-
ID Number:
Section Number:
Course Instructors: Professors Abdallah Lyzzaik and Hassan Yamani

Question	Grade
1	$/ 20$
2	$/ 20$
3	$/ 20$
4	$/ 10$
5	$/ 100$
6	
TOTAL	

Answer The Following Six Questions On The Page Allocated For Each Question (You May Use The Back Of The Pages If Needed).

2

1. Find the general solution of the differential equation

$$
y^{(4)}+2 y^{\prime \prime \prime}+11 y^{\prime \prime}+2 y^{\prime}+10 y=0
$$

knowing that one of its solutions is $y=\cos x$.
2. Find the general solution of the differential equation

$$
x^{2} y^{\prime \prime}-x y^{\prime}+y=x^{2} .
$$

3. Use the method of undetermined coefficients to find the general solution of the differential equation

$$
y^{\prime \prime}+y=e^{x}+\sin x
$$

4. Use the substitution $x=e^{t}$ to transform the Cauchy-Euler differential equation

$$
x^{2} y^{\prime \prime}+10 x y^{\prime}+8 y=x^{2}
$$

to a differential equation of constant coefficients, then solve the differential equation. Show all the details of your work.
(20 points)
5. Find the general solution of the differential equation

$$
x y^{\prime \prime}-(x+1) y^{\prime}+y=0
$$

knowing that $y_{1}=e^{x}$ is a solution.
6. Can the set $\left\{x^{2}, x^{3}\right\}$ be a fundamental set over $(-\infty, \infty)$ for a linear homogeneous differential equation

$$
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0,
$$

where a_{2}, a_{1}, and a_{0} are continuous functions of $(-\infty, \infty)$ with $a_{2}(x) \neq$ 0 for all x ? Justify your answer.

