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1. Find the general solution of the differential equation
y(4) + 2y/// + 11y// _|_ 2y/ + 10y — O

knowing that one of its solutions is y = cos z. (20 points)
Solution. Since cosz is a solution, two characteristic root are +1.
Thus, by Synthetic Division by +i, the CE is found to be

m* 4+ 2m* + 11m* + 2m + 10 = (m — i) (m + i) (m* + 2m + 10) = 0

and the characteristic root are £i. and —1 + 3i. Hence, the GS for the
differential equation is

Y —c1co8x + cosinz + e “(cgcos3x + ¢4 sin3z), = € R.



2. Find the general solution of the differential equation

1,23/// o xy’ +y — :L‘Z.

(20 points)
Solution. This is a nonhomogeneous Cauchy-Euler differential equa-
tion with CE
m?> —2m+1=(m—1)?=0.
Hence the complementary solution is
Yo = 1T + coxInx.
By the method of VP, a particular solution is

Yp = 1T + ugw In,

where
uy =Wy /W and  uy = Wy /W,
with
r xlnzx
W= 1 14z |
0 zlnz
e —‘ 1 14+Inzx =—zlnz,
and
z 0
WQ = 1 1 = X.
Thus, uj = —Inz and u, = 1, and consequently, u; = — [Inz dz =

x —xlnz and uy = [dr = x. Hence,

Yy = (v —xlnz)r + 2 Inz = 2*

and the GS is

Yy = x4 coxInx + 22



3. Use the method of undetermined coefficients to find the general
solution of the differential equation
y'+y=¢e" +sinz.
(20 points)
Solution. This is a nonhomogeneous linear differential equation
with CE
m*+1=0.
Hence the characteristic roots are m = =41, and the complementary
solution is
Yo =crcosx +cosinx, x € R.
A particular solution of the differential equation is v, = yp, + Yp,,
where y,, and y,, are particular solutions of the differential equation
y' 4+ vy =e" and y" + y = sinx, respectively.
A particular solution of the first differential equation is given by
Yp, = x(acosx + bsinz). Then

Y, = (acosx + bsinr) + x(—asinx + bcos )
and
Yy, = —2asinz + 2bcosz + z(—acosx — bsinz).
Hence, by substitution, in the first differential equation, we obtain

—2asinx + 2bcosx = sin x,

which gives a = —1/2 and b = 0. Thus y,, = —(rcosx)/2.

A particular solution of the second differential equation is given by
Yp, = ae®. Then y, = y"py = ae®. Hence, by substitution, in the
second differential equation, we obtain 2ae® = e*, or a = 1/2. Thus
Ypo = €7 /2.

Therefore, y, = —(zcosx)/2 + €”/2, and the GS is

c1cosT + cosinx — (zcosz)/2 4+ €"/2, z €R.
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4. Use the substitution z = €’ to transform the Cauchy-Euler differ-
ential equation
2%y 4+ 10xy’ + 8y = 2
to a differential equation of constant coefficients, then solve the differ-
ential equation. Show all the details of your work.
(20 points)
Solution. By substitution, we find
/ ]' .
Yy ==Y, )
x

= ;z(y" —v),
and the differential equation becomes
Y+ 9y + 8y = e*,
Hence, the CE is m? + 9m + 8 = (m + 1)(m + 8) = 0 and the CRs are
—1, —8. Thus complementary solution of the differential equation is
Yo = cre " + cpe B,
Let y, = Ae*'. By substitution in the latter differential equation yields,
(4A+ 18A + 8A)e™ = ™.
Then A = 1/30, and y, = €**/30. therefore, the GS in ¢ is
y = cret 4 cpe” ¥ 4 /30,
and in terms in it is

y=cix ' + cx® 4+ 22/30,



5. Find the general solution of the differential equation

xy' —(x+ 1)y +y=0

knowing that y; = e” is a solution. (10 points)
Solution. Write the DE as
r+1 1
y' - y+-y=0.
x T

By the Reduction of Order method,
. [ X r+1)/z) dx
oo I D)

62w

dac:ew/xe—xdx:—x—l.
Hence, the GS is
y=ce"+eox+1), zek
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6. Can the set {z? 2%} be a fundamental set over (—oo,00) for a
linear homogeneous differential equation

ag(x)y" + a1 (x)y' + ag(z)y = 0,
where ay, a1, and ag are continuous functions of (—oo, 00) with as(z) #
0 for all 27 Justify your answer.
Solution. The set {z? 23} is not a fundamental set over (—oo, 00)
for any of the suggested differential equations since the Wronskian

x?  ad

2¢ 3z?

W(a? 2%) =

is zero when z = 0 and nonzero otherwise.
(10 points)



