MATHEMATICS 202
SPRING SEMESTER 2007-08
SOLUTION OF QUIZ II

Time: 70 MINUTES
Date: April 19, 2008
Name:

ID Number:
Section Number:
Course Instructors: Professors Abdallah Lyzzaik and Dolly Fayyad

Question	Grade
1	$/ 15$
2	$/ 15$
3	$/ 15$
4	$/ 15$
5	$/ 15$
6	$/ 100$
7	
TOTAL	

Answer The Following Six Questions On The Page Allocated For Each Question (You May Use The Back Of The Pages If Needed).

1. Solve the initial-value problem

$$
x \frac{d y}{d x}+4 y=x^{4} y^{2} ; \quad y(1)=1
$$

(15 points)
Solution. By writing the DE as

$$
\frac{d y}{d x}+\frac{4}{x} y=x^{3} y^{2}
$$

it becomes a Bernoulli DE of degree 2. Now write the latter equation as

$$
y^{-2} \frac{d y}{d x}+\frac{4}{x} y^{-1}=x^{3},
$$

and let $u=y^{-1}$. Then $-u^{\prime}=y^{-2} y^{\prime}$ and substitution yields

$$
\frac{d u}{d x}+\frac{-4}{x} u=-x^{3},
$$

which is a linear DE of order 1 with an integrating factor

$$
\mu(x)=\int \exp \left(\frac{-4}{x}\right) d x=\frac{1}{x^{4}} .
$$

Multiplying μ with the latter DE yields

$$
\frac{1}{x^{4}} \frac{d u}{d x}+\frac{-4}{x^{5}} u=-x^{-1}
$$

or

$$
\frac{d}{d x}\left(\frac{u}{x^{4}}\right)=-x^{-1}
$$

Integration of both sides with respect to x gives

$$
\left(\frac{u}{x^{4}}\right)=-\ln |x|+c,
$$

or

$$
\left(\frac{1}{y x^{4}}\right)=-\ln |x|+c .
$$

Since $y(1)=1, c=1$ and the solution of the initial-value problem is

$$
y=\frac{1}{x^{4}(1-\ln |x|)} .
$$

2. Find the general solution of the differential equation

$$
\left(3 x^{2} y+y^{3}\right) d x+\left(x^{3}+3 x y^{2}\right) d y=0
$$

(15 points)
Solution. Since $3 x^{2} y+y^{3}$ and $3 x^{2} y+y^{3}$ are homogenous functions of same degree 3 , the DE is homogenous. If $y=u x$, then $d y=u d x+x d u$ and, by substitution the DE becomes

$$
x^{3}\left(u^{2}+3\right) d x+x^{3}\left(3 u^{2}+1\right)(u d x+x d u)=0,
$$

or

$$
4 u\left(u^{2}+1\right) d x+x\left(3 u^{2}+1\right) d u=0
$$

or

$$
\frac{d x}{x}+\frac{1}{4}\left\{\frac{1}{u}+\frac{2 u}{u^{2}+1}\right\} d u=0 .
$$

Integration of both sides then gives

$$
\ln \left\{x^{4}|u|\left(u^{2}+1\right)\right\}=c_{1}
$$

or

$$
\ln \left\{x^{4}\left|\frac{y}{x}\right|\left(\left(\frac{y}{x}\right)^{2}+1\right)\right\}=c_{1},
$$

or

$$
x y\left(x^{2}+y^{2}\right)=c
$$

where $c \in \mathbb{R}$ since by inspection $y=0$ is a trivial solution of the DE , is the general solution of the DE .
3. Find the general solution of the differential equation

$$
\begin{equation*}
\cos x d x+\left(1+\frac{2}{y}\right) \sin x d y=0 \tag{15points}
\end{equation*}
$$

by finding an appropriate integrating factor.
Solution. Let $M=\cos x$ and $N=(1+2 / y) \sin x$. Since

$$
M_{y}=0 \neq\left(1+\frac{2}{y}\right) \cos x=N_{x}
$$

the DE is not exact. But

$$
\frac{M_{y}-N_{x}}{N}=-\cot x ;
$$

hence the DE has integrating factor

$$
\mu(x)=\exp ^{\int(-\cot x) d x}=\frac{1}{\sin x} .
$$

Multiplying this with the DE yields the equation

$$
\cot x d x+\left(1+\frac{2}{y}\right) d y=0
$$

which is exact and separable. Integration of both sides gives

$$
\ln |\sin x|+y+\ln y^{2}=c_{1}
$$

or

$$
y^{2} e^{y} \sin x=c,
$$

where $c \neq 0$ since $y=0$ is not a solution of the DE.
4. Find the general solution of the differential equation

$$
e^{-x} y^{\prime \prime}-2 e^{-x} y^{\prime}+2 e^{-x} y=\tan x
$$

Solution. Write the DE as

$$
y^{\prime \prime}-2 y^{\prime}+2 y=e^{x} \tan x .
$$

which is a linear nonhomogeneous DE of constant coefficients with auxiliary equation

$$
m^{2}-2 m+2=0
$$

whose roots are $m=1 \pm i$. Thus the complementary solution is

$$
y_{c}=e^{x}\left(c_{1} \cos x+c_{2} \sin x\right) ; \quad x \in \mathbb{R},
$$

By the variation of parameters method a particular solution of the DE is

$$
y_{p}=e^{x}\left(u_{1} \cos x+u_{2} \sin x\right) ; \quad x \in \mathbb{R},
$$

where $u_{1}^{\prime}=W_{1} / W, u_{2}^{\prime}=W_{2} / W$,

$$
\begin{gathered}
W=\left|\begin{array}{cc}
e^{x} \cos x & e^{x} \sin x \\
e^{x}(\cos x-\sin x) & e^{x}(\cos x+\sin x)
\end{array}\right|=e^{2 x}, \\
W_{1}
\end{gathered}=\left|\begin{array}{cc}
0 & e^{x} \sin x \\
e^{x} \tan x & e^{x}(\cos x+\sin x)
\end{array}\right|=-e^{2 x} \sin x \tan x, ~ l
$$

and

$$
W_{2}=\left|\begin{array}{cc}
e^{x} \cos x & 0 \\
e^{x}(\cos x-\sin x) & e^{x} \tan x
\end{array}\right|=e^{2 x} \sin x .
$$

Thus $u_{1}^{\prime}=-\sin x \tan x$ and $u_{2}^{\prime}=\sin x$; hence $u_{1}=\ln |\sec x-\tan x|+$ $\sin x$ and $u_{2}=-\cos x$. Thus

$$
y_{p}=e^{x} \cos x \ln |\sec x-\tan x| ; \quad x \in \mathbb{R}
$$

and the general solution of the DE is

$$
y=e^{x}\left(c_{1} \cos x+c_{2} \sin x\right)+e^{x} \cos x \ln |\sec x-\tan x| .
$$

5. Solve by two different methods the Cauchy-Euler differential equation

$$
\begin{equation*}
x^{3} y^{\prime \prime \prime}+x y^{\prime}-y=0 \tag{15points}
\end{equation*}
$$

Solution. Method 1. By using the substitution $x=e^{t}$, we find $y^{\prime}=$ $y / x, y^{\prime \prime}=\left(y^{*}-y^{\cdot}\right) / x^{2}$, and $y^{\prime \prime \prime}=\left(y^{\cdots}-3 y^{\cdot}+2 y^{\cdot}\right)$, where $y^{\cdot}=d y / d t$, $y^{\cdot}=d^{2} y / d t^{2}$, and $y^{.0}=d^{3} y / d t^{3}$. and the differentia equation becomes

$$
\left(y^{\cdots}-3 y^{\prime \prime}+3 y^{-}-y=0\right.
$$

which is a homogenous linear DE with constant coefficients whose auxiliary equation is $m^{3}-3 m^{2}+3 m-1=(m-1)^{3}=0$ and a single root $m=1$ repeated thrice. Thus the general solution of the differential equation is

$$
y=\left(c_{1}+c_{2} t+c_{3} t^{2}\right) e^{t}=\left(c_{1}+c_{2} \ln x+c_{3}(\ln x)^{2}\right) x, \quad x>0 .
$$

Method 2. By using the substitution $y=x^{m}$ the differential equation becomes

$$
x^{3}\left(m^{3}-3 m^{2}+3 m-1\right)=0,
$$

or for $x>0$,

$$
m^{3}-3 m^{2}+3 m-1=(m-1)^{3}=0
$$

which is the auxiliary equation for the DE . Thus the DE has a fundamental set $\left\{x, x \ln x, x(\ln x)^{2}\right\}$ and the general solution of the differential equation is

$$
y=\left(c_{1}+c_{2} \ln x+c_{3}(\ln x)^{2}\right) x, \quad x>0 .
$$

6. Find the general solution of the differential equation

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}-4 y^{\prime}+8 y=6 x e^{2 x}
$$

by using the method of undetermined coefficients.
(Hint: m=2)
(15 points)
Solution. This is a homogenous linear DE with constant coefficients whose auxiliary equation is

$$
m^{3}-2 m^{2}-4 m+8=(m-2)^{2}(m+2)=0
$$

and whose roots are $m=2$ (twice) and $m=-2$. Thus the complementary solution is

$$
y_{c}=\left(c_{1}+c_{2} x\right) e^{2 x}+c_{3} e^{-2 x} .
$$

By the method of undetermined coefficients the particular solution has the form

$$
y_{p}=x^{2}(a x+b) e^{2 x} .
$$

To find a and b we write

$$
\begin{gathered}
y_{p}^{\prime}=\left[2 a x^{3}+(3 a+2 b) x^{2}+2 b x\right] e^{2 x}, \\
\left.y_{p}^{\prime \prime}=\left[4 a x^{3}+4(3 a+b) x^{2}+(6 a+8 b) x+2 b\right] e^{2 x}\right],
\end{gathered}
$$

and

$$
\left.y_{p}^{\prime \prime \prime}=\left[8 a x^{3}+(36 a+8 b) x^{2}+(36 a+24 b) x+6 a+12 b\right] e^{2 x}\right] .
$$

Then by substitution in the differential equation we obtain

$$
[24 a x+(6 a+8 b)] e^{2 x}=6 x e^{2 x}, \quad \text { or } \quad 24 a x+(6 a+8 b)=6 x
$$

Hence, $24 a=6$ and $6 a+8 b=0$. Thus $a=1 / 4, b=-3 / 16$, and

$$
y_{p}=x^{2}(x / 4-3 / 16) e^{2 x} .
$$

Therefore the general solution is

$$
y=\left[c_{1}+c_{2} x-3 / 16 x^{2}+x^{3} / 4\right] e^{2 x}+c_{3} e^{-2 x} .
$$

7. Consider a linear homogeneous differential equation

$$
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0, \quad-\infty<x<\infty,
$$

where a_{2}, a_{1}, and a_{0} are continuous functions with $a_{2}(x) \neq 0$ for all x.
(a) Can a set $\left\{y_{1}, y_{2}\right\}$, where $y_{1}(0)=1, y_{2}(0)=-1, y_{1}^{\prime}(0)=-1$, $y_{2}^{\prime}(0)=1$, be a fundamental set of solutions for the differential equation? Justify your answer.

Solution. NO since $W\left(y_{1}(0), y_{2}(0)\right)=0$.
(b) Can a set $\left\{y_{1}, y_{2}, y_{3}\right\}$ of three nontrivial solutions of the differential equation be linearly independent? Justify your answer.
(5 points)
Solution. NO since a fundamental set consists only of two solutions; thus one solution must be a linear combination of the other two.

