A ROOM ROOM CA

MATHEMATICS 202 SPRING SEMESTER 2004 QUIZ I

Instructors: Ms. S. Jaafar, Dr. Abdallah Lyzzaik, Dr. Husam Yamani Date: March 18, 2004 Time: 60 MINUTES

Answer the following five questions:

1. Solve the initial-value problem

(10 points)

$$(x+2y+1)dx - (2x+4y+8)dy = 0,$$
 $y(0) = -1.$

2. Solve the differential equation

(10 points)

$$x\frac{dy}{dx} = y - x\cos^2\left(\frac{y}{x}\right), \quad x > 0.$$

3. Solve the initial-value problem

(10 points)

$$(2y - 4x^4y^4)dx + x dy = 0, y(1) = 1/7.$$

4. Solve the differential equation

(10 points)

$$(y + y^2 \cos x)dx + (2x + 3y \sin x)dy = 0, \quad y > 0.$$

5. (a) State the existence and uniqueness theorem for the initial-value problem (4 points)

$$\frac{dy}{dx} = f(x,y), \qquad y(x_0) = y_0.$$

(b) Determine the largest region of the xy-plane for which the differential equation (6 points)

$$\frac{dy}{dx} = \frac{1}{2} \left(\frac{x}{y} + \frac{y}{x} \right)$$

would have a unique solution whose graph passes through a point (x_0, y_0) in the region. Find, by inspection, the solution passing through any point (x, x), $x \neq 0$.