M202 - Differential Equations

Sample Quizz 2

Reminder: 2nd Quizz on 3/5/2006, 12:00-13:00 in Nicely 500

1. Given the differential equation $x^{2}\left(1+x^{2}\right)(1-x)^{3} y^{\prime \prime}+y=0$
(a) which real numbers a are singular, regular-singular, regular points of the equation?
(b) For $a=-1$ resp. $a=1 / 2$ there is a fundamental system of power series solutions $y_{i}=\sum_{n=0}^{\infty} c_{i, n} x^{n}, i=1,2$. Give a lower bound for the radius of convergence of these series.
2. Find a solution $y=y(x)$ of $y^{\prime \prime}+x^{4} y=0$ with $y(1)=1, y^{\prime}(1)=0$.
3. Find the general solution of the equation $y^{\prime \prime \prime}(x)+8 y^{\prime \prime}(x)+20 y^{\prime}(x)+16 y(x)=x$ Hint: $(-2)^{3}+8 *(-2)^{2}+20 *(-2)+16=0$
4. Find the general solution of $y^{\prime \prime}-2 y^{\prime}+y=-\ln (x)+\frac{1}{x}$.
5. Let $\sum_{n=0}^{\infty} c_{n} x^{n}$ be the Taylor series of the following functions f, around 0 , i.e. $c_{n}=\frac{1}{n!} \frac{d}{d x} f(0)$. What is the radius of convergence of this series in the cases

$$
f(x)=\frac{1}{1+x+x^{2}} \quad \text { and } \quad f(x)=\cos \left(e^{\frac{1}{3+x^{2}}}\right) .
$$

