H 2.1	Pauling Electronegativity					
Li	Be	В	С	Ν	0	F
1.0	1.5	2.0	2.5	3.0	3.5	4.0
Na	Mg	AI	Si	Р	S	CI
0.9	1.2	1.5	1.8	2.1	2.5	3.0
K	Са	Ga	Ge	As	Se	Br
0.8	1.0	1.6	1.8	2.0	2.4	2.8
Rb	Sr	In	Sn	Sb	Те	I
0.8	1.0	1.7	1.8	1.8	2.1	2.5
Cs	Ва	TI	Pb	Pb	Ро	At
0.7	0.9	1.8	1.9	1.9	2.0	2.2

Useful units

 Oserur units

 Avogadro number
 $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

 Gas constant (SI)
 $R = 8.3145 \text{ J mol}^{-1} \text{ K}^{-1}$

 Gas constant
 $R = 0.08206 \text{ L atm mol}^{-1} \text{ K}^{-1}$

 1 atm = 101 325 Pa = 760 mm Hg

 1 m³ = 10³ L

Q1 Consider the Lewis structure and the VSEPR-geometry of these molecules and decide which molecule has a linear structure.

- a) HCN
- b) NH_4^+
- c) CO_3^{2-}
- $d) \qquad SeF_2$
- e) H₂O

Q2 Complete the Lewis structure of the I₃⁻ion and identify the appropriate hybridization of the central I-atom

a)	sp	I ₃ —ion:	
b)	sp^2	-	
c)	sp ³		8
d)	dsp ³		
e)	d ² sp ³	L	
f)	none of the above		

Q3 For which of these molecules do you predict the smallest bond angle?

- a) CH₄
- b) NH₃
- c) H₂S
- d) CCl₄
- e) SiF₄
- Q4 As a response to allergens the body produces histamine. Complete the Lewis structure. How many sp³ hybridized carbon atoms do you identify in this molecule?

Q5 How many σ-bonds do you identify in the Histamine molecule?

- a) 2
- b) 15
- c) 17
- d) 19
- e) 22

Q6 Which of the following gas atoms or molecules has the largest root mean square velocity u_{rms} in a sample of our atmosphere at STP?

- a) Ar
- b) CO₂
- c) O₂
- d) CH₄
- e) they have all the same u_{rms}
- Q7 Argon effuses into a vacuum with a rate of 20mL/min. An unknown gas under the same conditions effuses with a rate of 30.7mL /min. Which one of the following gases could it be?
 - a) Ne
 - b) He
 - c) NH₃
 - d) UF₆
 - e) H₂

Q8 Calculate the average kinetic energy of Methane (CH₄) in J/mol at t =25° C, P=1 atm

- a) 3717 J/mol
- b) 311 J/mol
- c) 2477 J/mol
- d) 22.4 J/mol
- e) 36.68 J/mol

Q9 What is the density in g/L of Helium (He) in a stratospheric weather balloon at an altitude of ca 15,000 m; t = - 43 °C, and P = 66,000 Pa

- a) 0.138 g/L
- b) 14.01 g/L
- c) 138 g/L
- d) 0.000117 g/L
- e) Additional information is needed

- Q10 What is the pressure in the closed container when you read a ∆h of 125 mm on the open u-tube manometer filled with mercury at an atmospheric pressure of 101325 Pa?
 - a) 117990 Pa
 - b) 84659 Pa
 - c) 16665 Pa
 - d) 125 torr
 - e) 760 torr

- Q11 The *a* value in the van der Waals equation for Xe is _____ than Ne. The *b* value of Ne is _____ than Ar. Fill in the blanks using the words, respectively:
 - a) larger, larger
 - b) larger, smaller
 - c) smaller, larger
 - d) smaller, smaller
 - e) cannot be answered based on the information given
- Q12 Which one of the following statements *can be deduced* from the molecular distribution of speed graphs shown below, corresponding to 3 different gases having different molar masses M; the y-axis corresponds to the fraction of molecules with a particular speed:

Molecular Speed u m/s

- a) The average kinetic energy per mole of gas must be different for the three gases.
- b) $M_1 < M_2 < M_3$ (M is the molar mass).
- c) The temperature of Gas 3 must be higher than the temperature of Gas 1, otherwise its distribution function cannot be broader as shown.
- d) The molecules of Gas 2 move at a speed of 300 m/s and collide with each other, as a result the molecules undergo only a change in direction. The pressure exerted on the wall is a function of the frequency of collisions and the speed at which the particles are moving.
- e) All are false

Q13 Consider CO₂ and Ne under the following conditions:

<u>Flask A, CO₂ (g)</u>	Flask B, Ne (g)
2 moles	3 moles
740 K	370 K
0.50 atm	0.80 atm
	_

Which of the following statements is *true*?

- a) The volume CO₂ occupies is twice the volume occupied by Ne.
- b) The force exerted when a CO_2 molecule collides with the walls is smaller than the force exerted when a Ne molecule collides with the walls.
- c) The average kinetic of a Ne molecule is twice the average kinetic energy of CO_2 molecule.
- d) The u_{rms} for the CO₂ molecules is smaller than the u_{rms} for the Ne molecules.
- e) All are false
- Q14 The valve between a 10-L tank containing a gas at 1 atm and a 3-L tank containing a gas at 0.5 atm is opened. Nothing else is changed in the environment. The two gases do not react. Calculate the final pressure in the tank:
 - a) 0.88 atm
 - b) 1.5 atm
 - c) 2.45 atm
 - d) 0.75 atm
 - e) Not enough information is given to solve for the final pressure.

Q15 The hybridization of I in ICl₄ is:

- a) sp
- b) sp^2
- c) sp^3
- d) \hat{dsp}^2
- e) d^2sp^3

Q16 Which of the following molecules (C: central atom) contains the shortest C-O bond:

- a) CH₃OH
- b) CH_2O
- c) CO
- d) CO₂
- e) CH₃CH₂OH

Q 17 Which of the following molecules has a resultant dipole moment $\mu \neq 0$?

- a) CHCl₃
- b) BF₃
- c) TeF₄
- d) a and c
- e) all of the above

Q18 Which of the following is expected to be the best resonance structure of SCN⁻a)

- 19 Which of the following electron arrangement and molecular geometries around the central atom (1st atom is the central atom) correctly correspond to the molecule in question:
 - a) CO₂, electron arrangement: trigonal planar; geometry: bent
 - b) CIF₃, electron arrangement: octahedral; geometry: T-shaped
 - c) XeCl₄, electron arrangement: trigonal bipyramid; geometry: see-saw
 - d) XeF₂, electron arrangement: trigonal bipyramid; geometry: linear
 - e) b and c are correct

Q20 How many atoms are in the same plane for the following molecule?

Periodic table:

6 Ž

0

Ð

M