Recitation 1

General properties of light waves (energy/frequency/wavelength relations)

Chapter 7: Exercise 36

One type of electromagnetic radiation has a frequency of 107.1 MHz , another type has a wavelength of $2.12 \times 10^{-10} \mathrm{~m}$, and another type of electromagnetic radiation has photons with energy equal to 3.97×10^{-19} $\mathrm{J} / \mathrm{photon}$. Identify each type of electromagnetic radiation and place them in order of increasing photon energy and increasing frequency.

Solution:
For $1^{\text {st }}$ electromagnetic radiation:
$v_{A}=107.1 \mathrm{MHz}=107.1 \times 10^{6} \mathrm{~Hz}$
So, $\mathrm{E}_{\mathrm{A}}=\mathrm{h} v_{\mathrm{A}}=\left(6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right) \times\left(107.1 \times 10^{6} \mathrm{~s}^{-1}\right)=7.12 \times 10^{-26} \mathrm{~J} /$ photon

$$
\lambda_{\mathrm{A}}=\mathrm{c} / \mathrm{v}_{\mathrm{A}}=\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) /\left(107.1 \times 10^{6} \mathrm{~s}^{-1}\right)=2.78 \mathrm{~m} \text { (radio wave) }
$$

For 2 ${ }^{\text {nd }}$ electromagnetic radiation:
$\lambda_{\mathrm{B}}=2.12 \times 10^{-10} \mathrm{~m}$, (X-ray wave)
So, $\mathrm{E}_{\mathrm{B}}=\mathrm{hc} / \lambda_{\mathrm{B}}=9.3755 \times 10^{-16} \mathrm{~J} /$ photon

$$
v_{B}=c / \lambda_{B}=1.41 \times 10^{18} \mathrm{~Hz}
$$

For $3^{\text {rd }}$ electromagnetic radiation:
$\mathrm{E}_{\mathrm{C}}=3.97 \times 10^{-19} \mathrm{~J} /$ photon
So, $\lambda_{\mathrm{C}}=\mathrm{hc} / \mathrm{E}_{\mathrm{C}}=5.0 \times 10^{-7} \mathrm{~m}$ (visible wave)

$$
v_{\mathrm{C}}=\mathrm{E}_{\mathrm{C}} / \mathrm{h}=5.99 \times 10^{14} \mathrm{~Hz}
$$

Finally, $E_{B}>E_{C}>E_{A}$

$$
v_{B}>v_{C}>v_{A}
$$

Photoelectric effect

Chapter 7: Exercise No. 39
The work function of an element is the energy required to remove electron from the surface of the solid element. The work function of lithium is $279.7 \mathrm{~kJ} / \mathrm{mol}$ (that is, it takes 279.7 kJ of energy to remove one mole of electrons from one mole of Li atoms on the surface of Li metal). What is the maximum wavelength that can remove an electron from an atom on the surface of lithium metal?

Solution:
The energy required to remove a single electron is $279.7 \mathrm{~kJ} / \mathrm{mol}$

$$
\begin{aligned}
& =(279.7 \mathrm{~kJ} / \mathrm{mol}) \times\left(\mathrm{mol} / 6.022 \times 10^{23}\right) \\
& =4.64 \times 10^{-22} \mathrm{~kJ}
\end{aligned}
$$

$\mathrm{E}=\mathrm{hc} / \lambda$, or, $\lambda=\mathrm{hc} / \mathrm{E}=4.277 \times 10^{-7} \mathrm{~m}=427.7 \mathrm{~nm}$

DeBrgolie's relation

Chapter 7: Exercise No. 41
Calculate the de Broglie wavelength for each of the following.
a. an electron with a velocity 10% of the speed of light
b. a tennis ball (55 g) served at $35 \mathrm{~m} / \mathrm{s}(\sim 80 \mathrm{mi} / \mathrm{h})$

Solution:
(a) 10% velocity of light $=0.10 \times\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)=3.00 \times 10^{7} \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
\lambda & \left.\left.=\mathrm{h} / \mathrm{mv}=6.63 \times 10^{-34} \mathrm{~J} . \mathrm{s} /\left[\left(9.11 \times 10^{-31} \mathrm{~kg}\right) \times\right) 3 \times 10^{7} \mathrm{~m} / \mathrm{s}\right)\right] \\
& =2.4286 \times 10^{-11} \mathrm{~m}=24.28 \mathrm{pm}
\end{aligned}
$$

(b) $\lambda=\mathrm{h} / \mathrm{mv}=6.63 \times 10^{-34} \mathrm{~J} . \mathrm{s} /(0.055 \mathrm{~kg} \times 35 \mathrm{~m} / \mathrm{s})=3.444 \times 10^{-34} \mathrm{~m}$

This value is so small that it is essentially zero and we can not detect a wavelength so small. This means we do not have to consider the wave properties of large objects.

Bohr orbit
Calculate the radius of the third Bohr orbit in a Be^{3+} ion and the energy of the second Bohr level in a Li^{+2} ion.

Solution:
Formulas for the generalized Bohr Theory:

$$
\begin{aligned}
& E_{n}=-R_{H} \frac{Z^{2}}{n^{2}} ; \quad r_{n}=a_{0} \frac{n^{2}}{Z} \\
& a_{0}=0.529 \AA \equiv 52.9 \mathbf{p m} \\
& R_{H}=2.178 \times 10^{-18} \mathbf{J}=13.60 \mathrm{eV}
\end{aligned}
$$

So, $\mathrm{r}\left(\right.$ for $\left.\mathrm{Be}^{+3}\right)=\mathrm{a}_{0}\left(\mathrm{n}^{2} / \mathrm{z}\right)=0.529 \mathrm{~A} \mathrm{x}\left(3^{2} / 4\right)=1.19 \AA^{\circ}$
$\mathrm{E}\left(\right.$ for $\left.\mathrm{Li}^{+2}\right)=-\mathrm{R}_{\mathrm{H}}\left(\mathrm{z}^{2} / \mathrm{n}^{2}\right)=-2.178 \times 10^{-18} \mathrm{~J} \times\left(3^{2} / 2^{2}\right)=-30.6 \mathrm{eV}$

