| H
2.1 | Pauling Electronegativity | | | | | | | | |-----------------|---------------------------|-----|-----|-----|-----|-----|--|--| | Li | Be | В | С | N | 0 | F | | | | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | | | | Na | Mg | Al | Si | Р | S | CI | | | | 0.9 | 1.2 | 1.5 | 1.8 | 2.1 | 2.5 | 3.0 | | | | K | Ca | Ga | Ge | As | Se | Br | | | | 0.8 | 1.0 | 1.6 | 1.8 | 2.0 | 2.4 | 2.8 | | | | Rb | Sr | In | Sn | Sb | Te | ı | | | | 0.8 | 1.0 | 1.7 | 1.8 | 1.8 | 2.1 | 2.5 | | | | Cs | Ва | TI | Pb | Pb | Po | At | | | | 0.7 | 0.9 | 1.8 | 1.9 | 1.9 | 2.0 | 2.2 | | | Useful units Avogadro number Gas constant (SI) $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ $R = 8.3145 \text{ J mol}^{-1} \text{ K}^{-1}$ $R = 0.08206 \text{ L atm mol}^{-1} \text{ K}^{-1}$ Gas constant 1 atm = 101 325 Pa = 760 mm Hg 1 m³ = 10³ L - Q1 Consider the Lewis structure and the VSEPR-geometry of these molecules and decide which molecule has a linear structure. - **HCN** a) - NH_4^+ b) - $CO_3^{\frac{7}{2}}$ c) - d) SeF₂ - H_2O e) - $\mathbf{Q2}$ Complete the Lewis structure of the I₃-ion and identify the appropriate hybridization of the central I-atom - a) - b) - sp^3 c) - dsp^3 d) - $d^2 \bar{s} p^3$ e) - f) none of the above l₂-ion: - Q3For which of these molecules do you predict the smallest bond angle? - CH_4 a) - b) NH_3 - H_2S c) - d) CCl_4 - e) SiF₄ - **Q4** As a response to allergens the body produces histamine. Complete the Lewis structure. How many sp³ hybridized carbon atoms do you identify in this molecule? - 2 a) - b) 3 - 4 c) - 5 d) - e) none **Histamine:** | Q5 | How | many σ-bonds do you identify in the Histamine molecule? | |----|----------|---| | | o) | 2 | | | a)
b) | 15 | | | / | 17 | | | c) | | | | d) | 19
22 | | | e) | | | Q6 | | ch of the following gas atoms or molecules has the largest root mean square city \mathbf{u}_{rms} in a sample of our atmosphere at STP? | | | a) | Ar | | | b) | CO_2 | | | c) | O_2 | | | d) | $\mathrm{CH_4}$ | | | e) | they have all the same u_{rms} | | Q7 | same | on effuses into a vacuum with a rate of 20mL/min. An unknown gas under the conditions effuses with a rate of 30.7mL /min. Which one of the following gases I it be? | | | a) | Ne | | | b) | He | | | c) | NH_3 | | | d) | UF_6 | | | e) | H_2 | | Q8 | Calc | ulate the average kinetic energy of Methane (CH ₄) in J/mol at t =25° C, P=1 atm | | | , | 717 J/mol | | | , | 11 J/mol | | | , | 477 J/mol | | | , | 2.4 J/mol | | | e) 3 | 6.68 J/mol | | Q9 | | t is the density in g/L of Helium (He) in a stratospheric weather balloon at an ide of ca 15,000 m; $t=$ - 43 $^{\circ}$ C, and $P=$ 66,000 Pa | | | a) | 0.138 g/L | | | b) | 14.01 g/L | | | c) | 138 g/L | | | d) | 0.000117 g/L | | | e) | Additional information is needed | | | | | - What is the pressure in the closed container when you read a Δh of 125 mm on the open u-tube manometer filled with mercury at an atmospheric pressure of 101325 Pa? - a) 117990 Pa - b) 84659 Pa - c) 16665 Pa - d) 125 torr - e) 760 torr - Q11 The *a* value in the van der Waals equation for Xe is _____ than Ne. The *b* value of Ne is _____ than Ar. Fill in the blanks using the words, respectively: - a) larger, larger - b) larger, smaller - c) smaller, larger - d) smaller, smaller - e) cannot be answered based on the information given - Q12 Which one of the following statements can be deduced from the molecular distribution of speed graphs shown below, corresponding to 3 different gases having different molar masses M; the y-axis corresponds to the fraction of molecules with a particular speed: Molecular Speed u m/s - a) The average kinetic energy per mole of gas must be different for the three gases. - b) $M_1 < M_2 < M_3$ (M is the molar mass). - c) The temperature of Gas 3 must be higher than the temperature of Gas 1, otherwise its distribution function cannot be broader as shown. - d) The molecules of Gas 2 move at a speed of 300 m/s and collide with each other, as a result the molecules undergo only a change in direction. The pressure exerted on the wall is a function of the frequency of collisions and the speed at which the particles are moving. - e) All are false Q13 Consider CO₂ and Ne under the following conditions: | Flask A, CO_2 (g) | Flask B, Ne (g) | |---------------------|-----------------| | 2 moles | 3 moles | | 740 K | 370 K | | 0.50 atm | 0.80 atm | ### Which of the following statements is *true*? - a) The volume CO₂ occupies is twice the volume occupied by Ne. - b) The force exerted when a CO₂ molecule collides with the walls is smaller than the force exerted when a Ne molecule collides with the walls. - c) The average kinetic of a Ne molecule is twice the average kinetic energy of CO₂ molecule. - d) The u_{rms} for the CO_2 molecules is smaller than the u_{rms} for the Ne molecules. - e) All are false - Q14 The valve between a 10-L tank containing a gas at 1 atm and a 3-L tank containing a gas at 0.5 atm is opened. Nothing else is changed in the environment. The two gases do not react. Calculate the final pressure in the tank: - a) 0.88 atm - b) 1.5 atm - c) 2.45 atm - d) 0.75 atm - e) Not enough information is given to solve for the final pressure. - Q15 The hybridization of I in ICl₄ is: - a) sp - b) sp² c) sp³ - d) \hat{dsp}^2 - e) d^2sp^3 - Q16 Which of the following molecules (C: central atom) contains the shortest C-O bond: - a) CH₃OH - b) CH₂O - c) CO - d) CO_2 - e) CH₃CH₂OH - Q 17 Which of the following molecules has a resultant dipole moment $\mu \neq 0$? - a) CHCl₃ - b) BF₃ - c) TeF₄ - d) a and c - e) all of the above # Q18 Which of the following is expected to be the best resonance structure of SCN a) b) c) d) e) $$s = c = N$$ # 19 Which of the following electron arrangement and molecular geometries around the central atom (1^{st} atom is the central atom) correctly correspond to the molecule in question: - a) CO₂, electron arrangement: trigonal planar; geometry: bent - b) ClF₃, electron arrangement: octahedral; geometry: T-shaped - c) XeCl₄, electron arrangement: trigonal bipyramid; geometry: see-saw - d) XeF₂, electron arrangement: trigonal bipyramid; geometry: linear - e) b and c are correct ## Q20 How many atoms are in the same plane for the following molecule? $$\begin{array}{c|c} \bullet & \bullet & \bullet \\ \hline & & \downarrow \\ CH_3 - C - C \underline{\hspace{0.5cm}} C - C \underline{\hspace{0.5cm}} C - C \underline{\hspace{0.5cm}} N - C - CH_3 \end{array}$$ - a) 4 - b) 5 - c) 8 - d) 9 - e) 10 | <u>∞</u> | 1.215
0.95
1.179# Helium
4.002 602 ±2 | 10
24.55 Neon
0.90179.7+6 | Δr | 1.784# Argon | | Ż | Krypton | 800 | 165
161
X | Xenon
131 29 +2 | | R | Radon | (77) | | | |-----------------|---|--|---|---|-------------|--|----------------------------|------------------|---|---|-----------------|----------------------------|---------------------------|----------|-----------------------|------------------------| | | 4.215
0.95
0.179 ^H
Heil | 84.95 F 27.10 N 6.00 | ,3,5,7 | 29 | 3 | X 115.78 X | - | 5,7 | 165
161 | 4 × × × × × × × × × × × × × × × × × × × | | At Zin Br | 9.914
FR | + | | | | (C) | 7 | | 17 ±1
239.1
172.2 | 3.17 H
Chlorine | | 332.25 | Bromine
70 904 | 5 | | lodine
126 904 47 +3 | 85 ±1,3,5,7 | 575 | Astatine | 017~) | | | | nt | 16 | 8 -2
90.18
50.35
1.429 a
Oxygen
15,999 4 ±3 | 16 ±2,4,6
377.8
388.4 | Sulfur | 34 -2,4,6 | Se | Selenium
78 95 +3 | 52 -2,4,6 | 1261
723
T 861
T 861 | Tellurium | 44.2 | Szz Po | Polonium | (~770) | | | | 6 | 15 | ±3,5,4,2 N Sgen 74 ±7 | ±3,5,4 | 1.82 2.
Phosphorus | ±3,5 | As Se | Arsenic
74.921 60 +2 | | $\overline{}$ | | +3,5 | | Bismuth 1 | 27 96 06 | | | | E | . + | | 15
317.3 | | 33 | 876 | A 24 | Ĩ., | 1 See Of 1 | | 188 | _ | | 1 | | | | <u>•</u> | 14 | H3 6 ±4,2
H3 4470
100 Carbon
H27 12.010 7 ±8 | 14 · | 2.33
Silicon
2.28.085.5.+3 | 32 | (1) (1) (1) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4 | Germanium | 20 | S356
505
730
730
730
730
730
730
730
730
730
730 | | ۳ | = 2023
601 | Lead | | | | | Ш | 13 | 5 +3 4275 2300 2.34 Boron 10.811±7 | 13 +3 2793 A 43 | 2.7 Aluminum
Aluminum
26.981 538 +2 | 31 +3 | 1 303 Ga 3107 Ge | Gallium
69.723 | 49 ₺ | 2346
430 | Indium
114.818 +3 | 81 +3.1 | — | allium | | | | | Of The Elements |) | 444 | 1 140 | 2 | +5 | Z | ٠÷ | +2 | C | | +2,1 | | | 1 | | | | 5 | | | | <u> </u> | +2,1 30 | Z 1180
693
7.14 | | 1 48 | 19 594 Cd | 2 t2 Ca | <u> </u> | | 1 Me | 1 | | | | <u> </u> | | | | , | 53 | 2836
1358
8.96 | Copper
63.546 ±3 | 47 | 1234 AC | | 62 | 1338 AL | Gold
196.966 55 +2 | | | | | Ö | | | | 10 | 28 +2.3 | 3187
1726
8.90 | Nickel
58.693 4 ±2 | 46 +2,4 | 3237
1825
12.0 | Palladium
106.42 | 78 +2,4 | 2045 | Platinum
195.078 ±2 | | | | | (1) | | | | | +2,3 | 0 | It
10 ±9 | +2,3,4 | _ | # 27
120
130
141 | 9,4,6 | <u>_</u> | F.3 | , | | <u> </u> | | $\frac{8}{5}$ | | e ge | | 6 | | 76 1788 C | Cobalt
58.933 200 ±9 | | - 12 | Rhodium
102.905 50 ±2 | 8 77 +2,3,4,6 | 4701
2716
22.5 | Iridium
192.217±3 | 109 | 111 | Meitnerium
(266) | | at | n states
most
state) | Atomic mass is accurate to ±1 in last decimal place unless otherwise indicated Examples: TI = 47.867 ± 0.001 | ± 0.002 | œ | | 1809
7.86 TE | Iron
55.845 ±2 | 44 +2,3,4,6,8 45 | 2523 RU | Ruthenium
101.07 ±2 | 76 +2,3,4,6,8 | SO | Osmium
190.23 ±3 | 108 | | Hassium
(265) | | dic Table | Oxidation states (Bold is most stable state) | Atomic mass is acc
to ±1 in last decims
unless otherwise in
Examples:
TI = 47.867 ± 0.001 | Fe = 55.845
68, 2339] | 7 | 6.5 | _ | Manganese
54.938 049 ±9 | <u> </u> | 18 E | | 75+7,6,4,2,-1 7 | 3453 Re 3300 C 31.0 | Rhenium
186.207 | | | Bohrium
(262) | | O | +4,3 | - [| Chem. 1996, | • | +6,3,2 25 + | | | 42 +6,5,4,3,2 43 | 4912 MO 4538 1 G | mn | 4,3,2 75+ | 3453 | | 107 | 11.1 | | | 5 | 22 3562 | Titanium 47.867 | Pure Appl. | 9 | 24 | 2130 | Chromium
51.996 1 ±6 | | 2890
10.2 | Molybder
95.94 | 74 +6,5,4,3,2 | 5828
3680
19.3 | Tungsten
183.84 | 106 | | Seaborgium
(266) | | 0 | \overline{II} | 4.5 | g/L) Fe = 55.k
[Atomic masses from <i>Pure Appl. Chem.</i> 1996, <i>68</i> , 2339] | 2 | 3 +5,4,3,2 | 2175 | Vanadium
50.941 5 | .1 +5,3 | 5017
2740
8.55 | Niobium
92.906 38 ±2 | 73 +5 | 2531
3287
166 | Tantalum
180.947 9 | 105 | | Dubnium
(262) | | eri | Atomic Number -
Boiling point (K) - | menting point (k) — Density at 300 K — (g (cm ³) (Densities marked with a are at 273 K and 1 afm and the | units are g/L)
[Atomic r | 4 | +4,3 | 2087
2175
5.8 | Titanium
47.867 | 4+ | 12 KJ 80 | Zirconium
91.224 ±2 9 | ++ 7 | H 32 | Hafnium
178.49 ±2 | | | Rutherfordium
(261) | | 4 | Atom | Densition (9 (Densitive with a and 1 at an | units | • | ±3 22 | C 1943
45 | | +₃ 40 | 4682 2125 6.49 | | +₃ 72 | 2500
13.1 | | ± 104 | S | | | | r | | | က | 21 | | Scandium
44.955 910 ±8 | | 3611
1799
4.5 | Yttrium
88.905 85 ±2 | 22 | 730 | Lanthanum
138.905 5 ±2 | | 1323
1323
10.07 | Actinium
(227) | | | 8 | 4 +2
2745 Be
1560 Be
1.85 Beryllium
9.012 182 ±3 | 12
1363
922
922
922
922
922
922
922
922
922
92 | Magnesium
24.305 0 ±6 | +5 | 1125 Ca
1155 Ca | Calcium
40.078 ±4 | 38 +2 | 1050
1041
2.6 | Strontium
87.62 | 2e +2 | 1 1002 Ba | Barium
137.327 ±7 | 88 +2 | Ba
Regional | Radium
(226) | | - | 1.025
0899#
Hydrogen
1.007 94 ±7 | 15 27
44 115
53 1141
Lithium 6.941±2† 9 | ² E | | +1 | Y | Potassium
39.098 3 | +1 | 2 2 3 3 3 3 3 3 3 3 3 3 | Rubidium 85.467 8 ±3 | +1 | ပ္ပ | sium
05 45 ±2 | ÷ | 973 | Francium
(223) | | - | 20.268
14.025
0.0899#
Hydro
1.007 | 6.9 | 1156 | 86.22 | 19 | 336 | Pot. | 37 | 961
313
1.53 | Rul
85.4 | 22 | 302 | , C. 132.9 | 87 | 96 ₁ | Fra | | 29 | 2968 | 8.80
Holmiu | 30 | | Einsteini | |-----------------------------|---|---|--|----------------------|--| |) _₹ 99 | 2835 DV 1743 F | Gadolinium Terbium Dysprosium Holmiu 157 25 +3 158 925 34 +2 162 50 +3 164 020 22 | 6 +3 97 +43 98 +3 99 | - C |) <u>F</u> : | | +3 | ٩ | 8.27
Terbium
158 925 34 +2 | 97 43 98 | | Berkelium Californium | | 64 +3 65 | 3539
1585
G d | Gadolinium | 96 | 1340 CHI | Curium
(247) | | 63 +32 | 1870
1090
5.26 | Europium
151.964 | +5,4 92 +6,5,4,3 93 +6,5,4,3 94 +6,5,4,3 95 +6,5,4,3 | 2880
1266
13.6 | Plutonium Americium (243) | | +3,4 60 +3 61 +3 62 +3,2 63 | 1345 ST 1090 F | Samarium
150.36 ±3 | 94 +6,5,4,3 | 3503
913
19.8 | Plutonium
(244) | | _€ + | Jr 1289 Nd 1204 Dm 1345 C 1289 Md 1204 Dm 1345 C | Promethium
(145) | 93 +6,5,4,3 | 3503
20.4 S | Neptunium
237.048 2 | | _₹ | 3341
1289
7.00 | Neodymium
144.24 ±3 | 92 +6,5,4,3 | _ | Uranium
238.028 9 | | 59 +3,4 | | raseod)
40.907 | 91 +5,4 | - Da 4407 | Thorium Protactinium Uranium 232.038 1 231.035 88 ±2 238.028 9 | | 58 +3.4 59 | 3699 Ce 1204 | erium
10.116 | 51 06 | 5061
2028
11.7 | Thorium 232.038 1 | | | | | | | |