Recitation 06

Mixture of Ideal Gases

1. Chapter 5: Exercise: 69

The partial pressure of $\mathrm{CH}_{4}(\mathrm{~g})$ is $\mathbf{0 . 1 7 5} \mathrm{atm}$ and that of $\mathrm{O}_{\mathbf{2}}(\mathrm{g})$ is $\mathbf{0 . 2 5 0}$ atm in a mixture of the two gases.
a. What is the mole fraction of each gas in the mixture?
b. If the mixture occupies a volume of 10.5 L at $65{ }^{\circ} \mathrm{C}$, calculate the total number of moles of gas in the mixture.
c. Calculate the number of grams of each gas in the mixture.

Solution:
(a) mol fraction of $\mathrm{CH}_{4}, \chi_{\mathrm{CH} 4}=\mathrm{P}_{\mathrm{CH} 4} / \mathrm{P}_{\text {total }}$

$$
=0.175 \mathrm{~atm} /(0.175 \mathrm{~atm}+0.250 \mathrm{~atm})=0.412
$$

$$
\chi_{\mathrm{O} 2}=1.00-\chi_{\mathrm{CH} 4}=1.00-0.412=0.588
$$

(b) $\mathrm{PV}=\mathrm{nRT}$
$\mathrm{n}_{\text {total }}=\mathrm{P}_{\text {total }} \mathrm{V} / \mathrm{RT}$
$=(0.425 \mathrm{~atm} * 10.5 \mathrm{~L}) /\left(0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} * 338 \mathrm{~K}\right)$
$=0.161 \mathrm{~mol}$
(c) $\chi_{\mathrm{CH} 4}=\mathrm{n}_{\mathrm{CH} 4} / \mathrm{n}_{\text {total }}$

$$
\mathrm{n}_{\mathrm{CH} 4}=\chi_{\mathrm{CH} 4 *} \mathrm{n}_{\text {total }}=0.412 * 0.161 \mathrm{~mol}=6.63 \times 10^{-2} \mathrm{~mol} \mathrm{CH}_{4}
$$

$$
=6.63 \times 10^{-2} \mathrm{~mol} \mathrm{CH}_{4} \times 16.04 \mathrm{~g} / \mathrm{mol} \mathrm{CH}_{4}
$$

$$
=1.06 \mathrm{~g} \mathrm{CH}_{4}
$$

$\mathrm{n}_{\mathrm{O} 2}=0.588 \times .161 \mathrm{~mol}=9.47 \times 10^{-2} \mathrm{~mol} \mathrm{O}_{2}$
$=9.47 \mathrm{x10}^{-2} \mathrm{~mol} \mathrm{O}_{2} \times 32.0 \mathrm{~g} / \mathrm{mol} \mathrm{O}_{2}$

$$
=3.03 \mathrm{~g} \mathrm{O}_{2}
$$

Real Gases
2. Chapter 5: Exercise: 89

Calculate the pressure exerted by $0.5000 \mathrm{~mol} \mathrm{~N}_{2}$ in a $1.000-\mathrm{L}$ container at $25.0{ }^{\circ} \mathrm{C}$
a. Using the ideal gas law.
b. Using the van der Waals equation.
c. Compare the results

Solution:
(a) Ideal gas law: $\mathrm{PV}=\mathrm{nRT}$

$$
\begin{aligned}
& \mathrm{P}=\mathrm{nRT} / \mathrm{V} \\
& =\left[0.500 \mathrm{~mol} * 0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} *(25+273.2) \mathrm{K}\right] / 1.000 \mathrm{~L} \\
& =12.24 \mathrm{~atm}
\end{aligned}
$$

(b) van der Waals equation: $\left[\mathrm{P}+\mathrm{a}(\mathrm{n} / \mathrm{V})^{2}\right] *(\mathrm{~V}-\mathrm{nb})=\mathrm{nRT}$

$$
\text { For } \mathrm{N}_{2}, \mathrm{a}=1.39 \mathrm{~atm} \mathrm{~L}{ }^{2} / \mathrm{mol}^{2} \text { and } \mathrm{b}=0.0391 \mathrm{~L} / \mathrm{mol}
$$

$$
\left[\mathrm{P}+1.39(0.500 / 1.000)^{2} \mathrm{~atm}\right] *(1.000 \mathrm{~L}-0.5000 * 0.0391 \mathrm{~L})
$$

$$
=0.500 \mathrm{~mol}^{*} 0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} *(25+273.2) \mathrm{K}
$$

$$
\begin{aligned}
& \text { Or, }(\mathrm{P}+0.348 \mathrm{~atm}) *(0.9805 \mathrm{~L})=12.24 \mathrm{~atm} \\
& \mathrm{P}=(12.24 \mathrm{~L} \mathrm{~atm} / 0.9805 \mathrm{~L})-0.348 \mathrm{~atm}=12.48-0.348=12.13 \mathrm{~atm}
\end{aligned}
$$

(c) The ideal gas law is high by 0.11 atm or $(0.11 / 12.13) * 100=0.91 \%$ Thus, using ideal gas law we got an over estimated value.

Intermolecular forces

3. Chapter 10: Exercise: 33

Rationalize the difference in boiling points for each of the following pairs of substances:
a. n-pentane, $36.2^{\circ} \mathrm{C}$ neopentane, $9.5{ }^{\circ} \mathrm{C}$
b. HF $20^{\circ} \mathrm{C}$
$\mathrm{HCl}-85^{\circ} \mathrm{C}$
c. $\mathrm{HCl}-85^{\circ} \mathrm{C}$

LiCl $1360{ }^{\circ} \mathrm{C}$
d. n-pentane $36.2{ }^{\circ} \mathrm{C}$ n-hexane $69{ }^{\circ} \mathrm{C}$

Solution:
(a)Neopentane is more compact than n-pentane. Therefore, there is less surface area contact among neopentane molecules. This leads to weaker London dispersion forces and a lower boiling point.
(b) HF is capable of the hydrogen bonding, but HCl is not.
(c) LiCl is ionic and HCl is a molecular solid with only dipole forces and London dispersion forces. Ionic forces are much stronger than the forces for molecular solids.
(d) N-Hexane is a larger molecule, so it has stronger London dispersion force

Phase diagrams

4. Chapter 10: Exercise: 91

Consider the phase diagram given below. What phases are present at points A through \mathbf{H} ? Identify the triple point, normal boiling point, normal freezing point, and critical point. Which phase is denser, solid or liquid?

Solution:
A: Solid
B: Liquid
C: Gas/Vapour
D: Solid + Vapour
E. Solid + Liquid + Vapour

F: Liquid + Vapour
G: Liquid + Vapour
H: Vapur
The triple point is \mathbf{E}, critical point is \mathbf{G}
Normal freezing point: Temperature at which solid-liquid line is at 1 atm
Normal boiling point: Temperature at which liquid-vapour line is at 1 atm

Since the solid-liquid line has a positive slope, the solid phase is denser than the liquid phase.

5. Heating curve of water is shown below:

When ice is heated continuously, the temperature increases with time. The heat evolved during this process is given as q (mass of the substance*heat capacity*change in temperature $=m^{*} C^{*} \Delta T$).

The temperature of the system continues to increases until it reaches $0^{\circ} \mathrm{C}$ when ice starts melting to form liquid water. During transformation of ice to liquid water at $0^{\circ} \mathrm{C}$, the temperature remains constant until all the ice is converted to liquid state. The heat evolved during the transition at $0^{\circ} \mathrm{C}$ is called enthalpy of fusion $\Delta \mathrm{H}_{\text {fusion }}$ (total heat evolved during the process is given as $\left.\mathrm{m}^{*} \Delta \mathrm{H}_{\text {fusion }}\right)$.

When all ice is converted to liquid water, again the temperature starts increasing till when liquid water starts converting to vapour at $100^{\circ} \mathrm{C}$. Similar to heat of fusion, the temperature remains constant at $100^{\circ} \mathrm{C}$ until all the water in liquid state is converted to its vapour (steam). The heat evolved during this transition is called enthalpy of vaporization, $\Delta \mathrm{H}_{\text {fusion }}$. When all water gets converted to steam, again the temperature increases.

6. Application to heating curve:

Chapter 10: Exercise 87
How much energy does it take to convert 0.500 kh ice at $-20^{\circ} \mathrm{C}$ to steam at $250{ }^{\circ} \mathrm{C}$? Specific heat capacities: ice, $2.03 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$; liquid, $4.2 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$, steam, $2.0 \mathrm{~J} / \mathrm{g} .{ }^{0} \mathrm{C}, \Delta \mathrm{H}_{\text {vapour }}=40.7 \mathrm{~kJ} / \mathrm{mol}, \Delta \mathrm{H}_{\text {fus }}=$ $6.02 \mathrm{~kJ} / \mathrm{mol}$.

Solution:

0.5 kg og ice $=500 \mathrm{~g}$ of ice $=500 / 18$ mole of ice $=27.77$ moles of ice
$\mathrm{q}_{1}=\mathrm{m}{ }^{*} \mathrm{C}^{*} \Delta \mathrm{~T}=500 \mathrm{~g} * 2.03 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} * 20^{\circ} \mathrm{C}=20 \mathrm{~kJ}$
$\left(\Delta \mathrm{T}=0^{\circ} \mathrm{C}--20^{\circ} \mathrm{C}=20^{\circ} \mathrm{C}\right)$

$$
\begin{aligned}
& \mathrm{q}_{2}=\mathrm{m}^{*} \Delta \mathrm{H}_{\text {fusion }}=27.77 \mathrm{~mol} * 6.02 \mathrm{~kJ} / \mathrm{mol}=167 \mathrm{~kJ} \\
& \mathrm{q}_{3}=\mathrm{m}^{*} \mathrm{C}^{*} \Delta \mathrm{~T}=500 \mathrm{~g} * 4.2 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} * * 100^{\circ} \mathrm{C}=210 \mathrm{~kJ} \\
& \left(\Delta \mathrm{~T}=100^{\circ} \mathrm{C}-0{ }^{\circ} \mathrm{C}=100^{\circ} \mathrm{C}\right) \\
& \mathrm{q}_{4}=\mathrm{m}^{*} \Delta \mathrm{H}_{\text {vapour }}=27.77 \mathrm{~mol} * 40.7 \mathrm{~kJ} / \mathrm{mol}=1130 \mathrm{~kJ} \\
& \mathrm{q}_{5}=\mathrm{m}^{*} \mathrm{C}^{*} \Delta \mathrm{~T}=500 \mathrm{~g}{ }^{*} 2.0 \mathrm{~J} / \mathrm{g.}^{\circ} \mathrm{C} * * 150^{\circ} \mathrm{C}=150 \mathrm{~kJ} \\
& \left(\Delta \mathrm{~T}=250^{\circ} \mathrm{C}-100^{\circ} \mathrm{C}=150^{\circ} \mathrm{C}\right) \\
& \mathrm{q}=\mathrm{q}_{1}+\mathrm{q}_{2}+\mathrm{q}_{3}+\mathrm{q}_{4}+\mathrm{q}_{5}=20 \mathrm{~kJ}+167 \mathrm{~kJ}+210 \mathrm{~kJ}+1130 \mathrm{~kJ}+150 \mathrm{~kJ} \\
& =1677 \mathrm{~kJ}
\end{aligned}
$$

