American University of Beirut Department of Electrical and Computer Engineering EECE 210 - Electric Circuits Quiz 2
 Closed Book - No Programmable Calculators - 90 minutes

April 17, 2015

Name: \qquad

ID: \qquad
Solve the following problems;
Provide your answers on the attached Scantron card;
This question sheet must be returned with the Scantron card;
There is No penalty;
Mark with a pencil your LAST NAME, your First name Initial (FI) and your Middle name Initial (MI);
Mark your AUB ID Number in the box titled "ID NUMBER";
Write the name of your course instructor on the Scantron card;
Use a pencil for marking your answers ;
When using an eraser, make sure that you have erased well.
This exam has 9 pages.
Course Instructors: L. Hamandi, S. Khaddaj, Y. Nasser, and R. Jabr.

1. In the circuit shown in Fig. $1, I_{S}=3 \mathrm{~A}$ and each of the resistances is equal to 5Ω. Find I_{X}.
(a) 0.25 A
(b) 0.5 A
(c) 0.75 A
(d) 1 A
(e) None of the above

Fig. 1: Circuit for Problem 1
2. If $R=30 \Omega$ in the circuit shown in Fig. 2, find the Thévenin voltage between terminals a, b.
(a) 10 V
(b) 20 V
(c) 30 V
(d) 40 V
(e) None of the above

Fig. 2: Circuit for Problem 2
3. If $I_{S}=5 \mathrm{~A}$ in the circuit shown in Fig. 3, find the Thévenin voltage between terminals a, b.
(a) 18 V
(b) 12 V
(c) 14 V
(d) 16 V
(e) None of the above

Fig. 3: Circuit of Problem 3
4. In the circuit shown in Fig. $4, R_{a}=3 \Omega$. Find the value of R_{L} that results in maximum power being transferred to R_{L}.
(a) 15Ω
(b) 16Ω
(c) 17Ω
(d) 18Ω
(e) None of the above

Fig. 4: Circuit of Problem 4
5. If $V_{S}=120 \mathrm{~V}$ in the circuit shown in Fig. 5, find the maximum power that can be delivered to R_{L}.
(a) 329.14 W
(b) 302.29 W
(c) 228.57 W
(d) 96.57 W
(e) None of the above

Fig. 5: Circuit of Problem 5
6. In the circuit shown in Fig. $6, V_{T}=120 \mathrm{~V}$. Find the component of I_{S} resulting from the V_{T} voltage source acting alone, with all the other voltage and current sources deactivated.
(a) 1 A
(b) 2 A
(c) 3 A
(d) 4 A
(e) None of the above

Fig. 6: Circuit of Problem 6
7. In the circuit shown in Fig. 7, $V_{C C}=2.5 \mathrm{~V}$. Find the maximum value of R_{X} that can be used such that the op-amp operates in its linear region.
(a) 15Ω
(b) 30Ω
(c) 45Ω
(d) 60Ω
(e) None of the above

Fig. 7: Circuit of Problem 7
8. Each op-amp shown in Fig. 8 is operating in the linear region, and each of the resistances is equal to 10Ω. If $V_{S}=6 \mathrm{~V}$ and $V_{T}=24 \mathrm{~V}$, find the current I_{O}.
(a) 0.5 A
(b) 0.6 A
(c) 0.7 A
(d) 0.8 A
(e) None of the above

Fig. 8: Circuit of Problem 8
9. The op-amp shown in Fig. 9 is operating in the linear region. $V_{S R C}=1 \mathrm{~V}, R_{1}=4 \mathrm{k} \Omega, R_{2}=40 \mathrm{k} \Omega$, $R_{3}=4 \mathrm{k} \Omega$, and $R_{L}=10 \mathrm{k} \Omega$. Find I_{L}.
(a) 1.75 mA
(b) 2.375 mA
(c) 3 mA
(d) 4.25 mA
(e) None of the above

Fig. 9: Circuit of Problem 9
10. If $C=11 \mu \mathrm{~F}$ in the network shown in Fig. 10, find the equivalent capacitance with respect to the terminals a, b.
(a) $0.8 \mu \mathrm{~F}$
(b) $2 \mu \mathrm{~F}$
(c) $2.4 \mu \mathrm{~F}$
(d) $3 \mu \mathrm{~F}$
(e) None of the above

Fig. 10: Circuit of Problem 10
11. In the circuit shown in Fig. 11, $L_{1}=4 \mathrm{H}, L_{2}=4 \mathrm{H}$, and $M=2 \mathrm{H}$. Write the mesh-current equation around mesh 2 (corresponding to mesh-current i_{2}).
(a) $6\left(d i_{1} / d t\right)-13\left(d i_{2} / d t\right)-14 i_{2}=0$
(b) $6\left(d i_{1} / d t\right)-12\left(d i_{2} / d t\right)-14 i_{2}=0$
(c) $6\left(d i_{1} / d t\right)-11\left(d i_{2} / d t\right)-14 i_{2}=0$
(d) $6\left(d i_{1} / d t\right)-10\left(d i_{2} / d t\right)-14 i_{2}=0$
(e) None of the above

Fig. 11: Circuit of Problem 11
12. In the circuit shown in Fig. 12, $V_{S}=75 \mathrm{~V}$. The switch has been closed for a long time, and is opened at $\mathrm{t}=0$. How much energy is delivered to the 5Ω resistor in the time interval interval $0 \leq t<\infty$?
(a) 0.3 J
(b) 1.2 J
(c) 2.7 J
(d) 4.8 J
(e) None of the above

Fig. 12: Circuit of Problem 12
13. In the circuit shown in Fig. 13, the initial currents in inductors L_{1} and L_{2} (10 A upward and 4 A downward) have been established by sources not shown. The switch is opened at $t=0$. Find the value of $i_{2}(t)$ at $t=0.82 \mathrm{~s}$.
(a) -5.00 A
(b) -4.80 A
(c) -4.60 A
(d) -4.40 A
(e) None of the above

Fig. 13: Circuit of Problem 13
14. In the circuit shown in Fig. $14, V_{S}=180 \mathrm{~V}$. The two switches operate simultaneously. Switch 1 (SW1) has been in position a and switch 2 (SW2) has been in position c for a long time. At $t=0, S W 1$ moves to position b and $S W 2$ moves to position d. Find $V_{o}\left(0^{+}\right)$.
(a) 10 V
(b) 20 V
(c) 30 V
(d) 40 V
(e) None of the above

Fig. 14: Circuit of Problem 14
15. In the circuit shown in Fig. 15, the initial capacitor voltages are $v_{1}(0)=10 \mathrm{~V}$ and $v_{2}(0)=5 \mathrm{~V}$. Find the value of $v_{2}(t)$ as $t \rightarrow \infty$.
(a) 9 V
(b) 13 V
(c) 17 V
(d) 21 V
(e) None of the above

Fig. 15: Circuit of Problem 15

