American University of Beirut Department of Electrical and Computer Engineering EECE 210 - Electric Circuits Quiz 2 Closed Book - No Programmable Calculators - 90 minutes

April 17, 2015

Name: _____

ID:_____

Solve the following problems;

Provide your answers on the attached Scantron card;

This question sheet must be returned with the Scantron card;

There is No penalty;

Mark with a pencil your LAST NAME, your First name Initial (FI) and your Middle name Initial (MI);

Mark your AUB ID Number in the box titled "ID NUMBER";

Write the name of your course instructor on the Scantron card;

Use a pencil for marking your answers ;

When using an eraser, make sure that you have erased well.

This exam has 9 pages.

Course Instructors: L. Hamandi, S. Khaddaj, Y. Nasser, and R. Jabr.

- 1. In the circuit shown in Fig. 1, $I_S = 3$ A and each of the resistances is equal to 5 Ω . Find I_X .
 - (a) 0.25 A
 - (b) 0.5 A
 - (c) 0.75 A
 - (d) 1 A
 - (e) None of the above

Fig. 1: Circuit for Problem 1

- 2. If $R = 30 \Omega$ in the circuit shown in Fig. 2, find the Thévenin voltage between terminals *a*,*b*.
 - (a) 10 V
 - (b) 20 V
 - (c) 30 V
 - (d) 40 V
 - (e) None of the above

Fig. 2: Circuit for Problem 2

- 3. If $I_S = 5$ A in the circuit shown in Fig. 3, find the Thévenin voltage between terminals *a*,*b*.
 - (a) 18 V
 - (b) 12 V
 - (c) 14 V
 - (d) 16 V
 - (e) None of the above

Fig. 3: Circuit of Problem 3

- 4. In the circuit shown in Fig. 4, $R_a = 3 \Omega$. Find the value of R_L that results in maximum power being transferred to R_L .
 - (a) 15 Ω
 - (b) 16 Ω
 - (c) 17 Ω
 - (d) 18 Ω
 - (e) None of the above

Fig. 4: Circuit of Problem 4

- 5. If $V_S = 120$ V in the circuit shown in Fig. 5, find the maximum power that can be delivered to R_L .
 - (a) 329.14 W
 - (b) 302.29 W
 - (c) 228.57 W
 - (d) 96.57 W
 - (e) None of the above

Fig. 5: Circuit of Problem 5

- 6. In the circuit shown in Fig. 6, $V_T = 120$ V. Find the component of I_S resulting from the V_T voltage source acting alone, with all the other voltage and current sources deactivated.
 - (a) 1 A
 - (b) 2 A
 - (c) 3 A
 - (d) 4 A
 - (e) None of the above

Fig. 6: Circuit of Problem 6

- 7. In the circuit shown in Fig. 7, $V_{CC} = 2.5$ V. Find the maximum value of R_X that can be used such that the op-amp operates in its linear region.
 - (a) 15 Ω
 - (b) 30 Ω
 - (c) 45 Ω
 - (d) 60Ω
 - (e) None of the above

Fig. 7: Circuit of Problem 7

- 8. Each op-amp shown in Fig. 8 is operating in the linear region, and each of the resistances is equal to 10 Ω . If $V_S = 6$ V and $V_T = 24$ V, find the current I_O .
 - (a) 0.5 A
 - (b) 0.6 A
 - (c) 0.7 A
 - (d) 0.8 A
 - (e) None of the above

Fig. 8: Circuit of Problem 8

- 9. The op-amp shown in Fig. 9 is operating in the linear region. $V_{SRC} = 1$ V, $R_1 = 4$ k Ω , $R_2 = 40$ k Ω , $R_3 = 4$ k Ω , and $R_L = 10$ k Ω . Find I_L .
 - (a) 1.75 mA
 - (b) 2.375 mA
 - (c) 3 mA
 - (d) 4.25 mA
 - (e) None of the above

Fig. 9: Circuit of Problem 9

- 10. If $C = 11 \ \mu$ F in the network shown in Fig. 10, find the equivalent capacitance with respect to the terminals *a*, *b*.
 - (a) 0.8 μF
 - (b) $2 \mu F$
 - (c) 2.4 µF
 - (d) 3 µF
 - (e) None of the above

Fig. 10: Circuit of Problem 10

- 11. In the circuit shown in Fig. 11, $L_1 = 4$ H, $L_2 = 4$ H, and M = 2 H. Write the mesh-current equation around mesh 2 (corresponding to mesh-current i_2).
 - (a) $6(di_1/dt) 13(di_2/dt) 14i_2 = 0$
 - (b) $6(di_1/dt) 12(di_2/dt) 14i_2 = 0$
 - (c) $6(di_1/dt) 11(di_2/dt) 14i_2 = 0$
 - (d) $6(di_1/dt) 10(di_2/dt) 14i_2 = 0$
 - (e) None of the above

Fig. 11: Circuit of Problem 11

- 12. In the circuit shown in Fig. 12, $V_S = 75$ V. The switch has been closed for a long time, and is opened at t = 0. How much energy is delivered to the 5 Ω resistor in the time interval interval $0 \le t < \infty$?
 - (a) 0.3 J
 - (b) 1.2 J
 - (c) 2.7 J
 - (d) 4.8 J
 - (e) None of the above

Fig. 12: Circuit of Problem 12

- 13. In the circuit shown in Fig. 13, the initial currents in inductors L_1 and L_2 (10 A upward and 4 A downward) have been established by sources not shown. The switch is opened at t = 0. Find the value of $i_2(t)$ at t = 0.82 s.
 - (a) -5.00 A
 - (b) -4.80 A
 - (c) -4.60 A
 - (d) -4.40 A
 - (e) None of the above

Fig. 13: Circuit of Problem 13

- 14. In the circuit shown in Fig. 14, $V_S = 180$ V. The two switches operate simultaneously. Switch 1 (SW1) has been in position *a* and switch 2 (SW2) has been in position *c* for a long time. At t = 0, SW1 moves to position *b* and SW2 moves to position *d*. Find $V_o(0^+)$.
 - (a) 10 V
 - (b) 20 V
 - (c) 30 V
 - (d) 40 V
 - (e) None of the above

Fig. 14: Circuit of Problem 14

- 15. In the circuit shown in Fig. 15, the initial capacitor voltages are $v_1(0) = 10$ V and $v_2(0) = 5$ V. Find the value of $v_2(t)$ as $t \to \infty$.
 - (a) 9 V
 - (b) 13 V
 - (c) 17 V
 - (d) 21 V
 - (e) None of the above

Fig. 15: Circuit of Problem 15