Determine all the currents and voltages in the circuit using superposition and mark them on the circuit diagram.



Solution:





 Find the Thevenin equivalent of the circuit shown in figure 10.

a) 
$$V_{th} = 10V$$
 and  $R_{th} = 1K$   
b)  $V_{th} = 0V$  and  $R_{th} = 0.1K$   
c)  $V_{th} = 10V$  and  $R_{th} = 2K$ 

d) 
$$V_{th} = 1V$$
 and  $R_{th} = 1K$ 

e) None of the above



 In the circuit of Figure 1, the Thevenin resistance as seen from terminals ab is;



- 100/9Ω
- c. 50/90
- d. 10Ω
- e. None of the above



#### In the circuit of Figure 8, the Thevenin equivalent resistance, across terminals a-b, is:







a)5.357A b)11.25A c)7.5A d)22.5A e)NOA

Problem 1 (10 pts)

Consider the circuit shown below.



1. We, first, set the current sources 5 mA and 10 mA to zero. Determine the equivalent resistance seen by the 20 mA current source. (5 pts)

R<sub>1</sub> = (4 + 1)||4 = 20/9 kΩ; R<sub>2</sub> = 20/9 + 2 = 38/9 kΩ, R<sub>eq</sub> = 2||(38/9) = 19/14= 1.36 kΩ

2. Write the node voltage equations by inspections (do not solve) (5 pts)

| 1.75V <sub>1</sub>  | - | 0.25V <sub>2</sub> | _ | $V_3$                      | = | 20 |
|---------------------|---|--------------------|---|----------------------------|---|----|
| -0.25V <sub>1</sub> | + | V <sub>2</sub>     | _ | 0.25 <i>V</i> <sub>3</sub> | = | 5  |
| - <i>V</i> 1        | _ | 0.25V <sub>2</sub> | + | 1.25 <i>V</i> ₃            | = | 5  |

#### Problem 2 (10 pts)

Consider the circuit shown below



1. We, first, set the 4V source and the 10V source to zero. Determine the equivalent resistor seen by the 8V voltage source. (5 pts)

 $R_{eq}$  = 5 + (2||4||4||1) = 5 + 0.5 = 5.5  $\Omega$ 

2. Write the mesh-current equations. (do not solve). (5 pts)

| 7 <i>I</i> 1     | - | 21 <sub>2</sub>         | - | 0/ <sub>3</sub>         | - | 0 <i>I</i> 4          | = | 8   |
|------------------|---|-------------------------|---|-------------------------|---|-----------------------|---|-----|
| -2/ <sub>1</sub> | + | 6 <i>1</i> <sub>2</sub> | _ | 4 <b>/</b> 3            | - | 0 <i>1</i> 4          | = | 4   |
| 0/ <sub>1</sub>  | _ | 4 <i>I</i> <sub>2</sub> | + | 5 <i>1</i> <sub>3</sub> | - | <i>I</i> <sub>4</sub> | = | -10 |
| 0/ <sub>1</sub>  | _ | 0 <i>1</i> 2            | _ | <i>I</i> <sub>3</sub>   | + | 5 <i>1</i> 4          | = | -4  |



21. Determine the resistance between terminals a b in figure 20.



 Determine the equivalent resistance between terminals a and b, given that all resistances are 1 Ω.

A. 5 Ω
B. 4.5 Ω
C. 4 Ω
D. 3 Ω

E. None of the above

Solution: The resistances not connected directly to

terminals a and b form a balanced bridge. Hence the resistance across the bridge does not carry any current and can be replaced by an open circuit or a short circuit. If replaced by an open circuit,  $R_{eq} = 1 + 2||2 + 1 = 3 \Omega$ .



Find the power consumed by the 50 20ohms ohm resistor in the circuit shown below 10v 20ohms + A) P= 0.246 W B) P= 0.692 W 50ohms  $V_0$ C) P= 2.358 W 20ohms 5v D) P= 5.100 W E) None of the — 20ohms above



Given the circuit above, determine the current  $I_x$  if voltage-controlled current source has B=0.2:

- $\rightarrow$  A) 0
  - B) 0.285
  - C) 1.285
  - D) 0.5
  - E) None of the above



7

What is I<sub>0</sub>?

A) 1 A → B) -1 A C) 2 A D) -2 A E) None of the above



The following values are given: I<sub>A</sub>= 1 mA, I<sub>B</sub>= 2 mA, I<sub>C</sub> = 4 mA, R<sub>1</sub> = R<sub>2</sub> = R<sub>3</sub> = 1 kΩ, What is the value of  $V_{bc}$ ?

→ A) 4 V B) -2 V C) 1 V D) 5 V E) None of the above



Find I<sub>x</sub>.

A) 4.2 A B) 3.5 A → C) 2.25 A D) 4.75 A E) None of the above

#### Problem 10



Find the Thevenin equivalent across terminals a and b.

A)  $R_{TH} = 40\Omega$ ,  $V_{TH} = 6.67 V$ B)  $R_{TH} = 40\Omega$ ,  $V_{TH} = -6.67 V$   $\rightarrow$  C)  $R_{TH} = 80\Omega$ ,  $V_{TH} = 12 V$ D)  $R_{TH} = 80\Omega$ ,  $V_{TH} = -12 V$ E) None of the above



Find the current,  $I_0$ , flowing through the dependant source.



#### Problem 12



Find the voltage, V, across the 2A source.

A) 400 V → B) 140 V C) 6 V D) -300 V E) None of the above

**P3.1.25** Determine V<sub>o</sub> in Fig. P3.1.25 using nodevoltage analysis.







 $V_d - V_c = 2V_x = 2V_b - 2V_a$ , or  $2V_a - V_c + V_d = 40$ . Solving,  $V_a = 40$  V,  $V_c = 40$  V,  $V_d = V_0 = 0$ .

**P3.1.26** Determine  $V_0$  in Fig. P3.1.25 using mesh-current analysis.

**Solution** For mesh 2:  $-2I_1 + 6I_2 - 2I_4 =$   $-2V_x$ ; substituting  $I_1 = 10$  and  $V_x = -2I_2$ :  $I_2 - I_4 = 10$ . For mesh 3:  $-4I_1 + 8I_3 - 4I_4 =$   $2V_x$ ;  $I_2 + 2I_3 - I_4 = 10$ . For mesh 4:  $-2I_2 - 4I_3 + 6I_4 = -20$ , or  $-I_2 2I_3 + 3I_4 = -10$ . Solving,  $I_2 =$ 10 A,  $I_3 = 0$ , and  $I_4 = 0$ , which gives  $V_0 = 0$ .



**P3.2.12** Determine  $V_0$  in Fig. P3.1.19 using superposition and calculate the power dissipated in the 5  $\Omega$  resistor.



Figure P3.1.19

**Solution:** With the 2 A source acting alone, the circuit becomes as shown. The source current flows through the 5  $\Omega$  resistor, so that  $V_{01} = 10$  V. Similarly, when the 4 A source is applied alone,  $V_{02} = 20$  V. From superposition,  $V_0 = V_{01} + V_{02} = 30$  V. The dependent source does not contribute to  $V_0$ .

Power dissipated in the 5  $\Omega$  resistor is

$$\frac{(30)^2}{5} = 180 \text{ W}.$$



Determine Io P3.2.13 *I*<sub>0</sub> in Fig. P3.1.21 using 5 S superposition 4 S 4 S and calculate  $\ge$  2 S 2 S < 4 V 2 V the power + dissipated in 3/<sub>0</sub> the 5 S resistor.



**Solution:** With the 2 V source acting alone, and the 4 V source replaced by a short circuit, the circuit becomes as shown. The source voltage is applied across the 5 S resistor, so that  $I_{O1} = 10$  A. Similarly,



when the 4 V source is applied alone,  $I_{O2} = 20$  A. From superposition,  $I_O = I_{O1} + I_{O2} = 30$  A. The dependent source does not contribute to  $I_O$ . Power dissipated in the 5 S resistor is

$$\frac{(30)^2}{5} = 180$$
 W.

**P4.1.8** Derive TEC between terminals ab in Fig. P4.1.8.

**Solution:** Let us first remove the 20  $\Omega$  resistor and reapply it later. On open circuit, each 1 A source produces a 10 V drop across the resistor in parallel with it. Hence  $V_{oc1} = 20$  V. On short circuit,  $I_{sc} = 1$  A, so that  $R_{Th1} = 20 \Omega$ . When the 20  $\Omega$  resistor is added at terminals ab,  $V_{Th} = 20 \times (20/40) = 10$  V and  $R_{Th} = (20||20) = 10 \Omega$ 



Figure P4.1.8

**P4.1.9** Derive TEC between terminals ab in Fig. P4.1.9.

**Solution:** On open circuit, KVL around the upper mesh gives  $20I_x = 20$ , or  $I_x = 1$  A. It follows that  $V_{Th} = V_{oc} = 20 + 20I_x = 40$  V.

On short circuit, the current in the 10  $\Omega$  resistor is 2 A. KVL around the upper mesh gives:  $20 = 5(I_x - I_{sc}) + 5(3I_x - I_{sc})$ , or  $2I_x - I_{sc} = 2$ ; from KCL at node c:  $3I_x - I_{sc} + 2 = I_x$ , or  $2I_x - I_{sc} = -2$ . This means that  $I_x$  and  $I_{sc}$  are indeterminate. This suggests that  $R_{Th} = 0$ , which would make  $I_{sc}$  indeterminate. To verify this, we apply a test



source of 1 A, with the voltage source set to zero. Then,  $4I_x + 2 = 0$ , so that  $I_x = -0.5$  A and  $V_T = 2(-0.5) + 1 = 0$ . Hence  $R_{Th} = 0$ .



# **P4.1.10** Derive NEC between the short-circuited terminals ab in Fig. P2.1.4.

**Solution:** If a test voltage is applied, KCL at node a gives  $I_{\phi} = I_T + 3$ . From KCL at node c,  $I_T + 3 + 10 = 5$ , or  $I_T = -8$  A, irrespective of  $V_T$ . It follows that  $I_N = 8$  A. Since  $I_T$  is independent of  $V_T$ , it means that there is no resistance in parallel with the current source  $I_N$ .

С



**P4.1.11** Determine  $V_0$  in Fig. P3.1.7 using TEC.





Solution: Open-circuit voltage: When only the

10 V source is applied,  $V_{Th1} = \frac{10}{30} \times 10 = \frac{10}{3}$  V. When only the 20 V source is applied  $V_{Th2} = 20$ V. Hence,  $V_{Th} = 70/3$  V. With both sources set to zero,  $R_{Th} = 10||20 = 20/3 \Omega$ . It follows that  $V_0$ 

$$= \frac{40}{40+20/3} \times \frac{70}{3} = 20 \,\mathrm{V}.$$



**P4.1.12** Determine *I*<sub>0</sub> in Fig. P3.1.9 using NEC.





Solution: With the 10 A source acting

alone,  $I_{N1} = \frac{10}{30} \times 10 = \frac{10}{3}$  A. With the 20 A source acting alone,  $I_{N2} = 20$  A. Hence,  $I_N = 70/3$  A. The conductance between terminals bc is  $\frac{20 \times 10}{20 + 10} = \frac{20}{3}$  S. It follows from NEC that  $I_0 = \frac{40}{40 + 20/3} \times \frac{70}{3} = 20$  A.



**P4.1.15** Determine V<sub>0</sub> in Fig. P3.1.15 using TEC.





**Solution:** On open circuit,  $I_x = 0$ , and the dependent source becomes an open circuit. It follows that  $V_{Th} = 10$  V. On short circuit, the circuit becomes as shown, where  $I_x = I_{SC}$  and the dependent source becomes  $5I_{SC}$ . It follows from

| KCL that: $I_{SC} = 5I_{SC} + \frac{10}{4}$ , which gives    |  |
|--------------------------------------------------------------|--|
| $I_{SC} = -\frac{5}{8}$ A, and $R_{SC} = -16 \Omega$ . Hence |  |

$$V_0 = \frac{4}{4 - 16} \times 10 = -\frac{10}{3}$$
 V.



**P4.1.16** Determine  $I_0$  in Fig. P3.1.17 using NEC.





**Solution:** On open circuit, 10 A flows through the 4 S resistor, so that  $V_{oc} = 5V_{oc}$  $+\frac{10}{4}$ , which gives  $V_{oc} = -\frac{5}{8}$  A. On short circuit,  $V_x = 0$  and the dependent source is zero, so that  $I_N = 10$  A. This makes  $G_N = -16$  S. It follows that  $I_0 = \frac{4}{4-16} \times 10 = -\frac{10}{3}$  A.

## **P4.1.17** Determine $V_0$ in Fig. P3.1.19 using NEC.

**Solution:** If the 5  $\Omega$  resistor is replaced by an open circuit, the circuit is invalid, as two unequal current sources will be connected in series through the 2  $\Omega$  resistors, and  $V_0 \rightarrow \infty$ . If a test source is applied in place of the 5  $\Omega$  resistor and the current sources replaced by open circuits, the resistance seen by the source is infinite. If the 5  $\Omega$  resistor is





replaced by a short circuit,  $I_{SC} = 6$  A. It follows that the circuit does not possess a TEC between the specified terminals, only an NEC consisting of an ideal current source of 6 A. This gives  $V_o$ = 30 V. **P4.1.18** Determine  $I_0$  in Fig. P3.1.21 using TEC.



circuits, the resistance seen by the source is zero. If the 5 S resistor is replaced by an open circuit,  $V_{Th} = 6$  V. It follows that the circuit does not possess an NEC between the specified terminals, only a TEC consisting of an ideal voltage source of 6 V. This gives  $I_0 = 30$  A.

**P4.1.19** Determine  $I_0$  in Fig. P3.1.23 using NEC.





**Solution:** With the 4 S resistor replaced by a short circuit,  $I_0$  can be obtained from mesh-current analysis. The mesh current equations are the same as those for P3.1.24 but with a coefficient of 0.5 for  $I_4$  in the equation for mesh 4. The equations are:

 $l_1 - 0.5l_2 = 9$ ;  $-0.5l_1 + 0.75l_2 + 0.5l_4 = -1$ ; and  $2l_1 - l_2 + l_4 = -4$ . Solving,  $l_4 = l_0 = -22$  A.

If a test source is substituted for the 4 S resistor, with the independent source set to zero, it is seen from KCL at the middle node that  $I_T = 0$ , which means that the source resistance is infinite. The circuit does not possess a TEC between the specified terminals, only an NEC.











Ą

 $V_x +$ b Solution: If a current source is applied at node d, а + with the independent sources set to zero, it is seen 2Ω that  $V_{ac} = V_x$ , so that  $V_{bd} = 0$  and  $V_0 = 0$ . In other  $V_{x}$ 2Ω 2Ω 2*V*, words the source sees a short circuit and  $R_{src} = 0$ . If the resistor between node d and the reference node С d + is replaced by an open circuit, the node-voltage 4Ω  $V_{0}$ equation at node a is:  $V_a - 0.5V_c = 20$ , and the node voltage equation at node c is:  $-0.5 V_a + 0.75 V_c = -I_y$ , where  $I_{y} =$ b а  $0.5(V_c + 2V_x - 20) =$ 2Ω  $0.5V_c + V_a - 30$ . Substituting for 2Ω 2Ω  $2V_x$  $I_{v}$ : 0.25  $V_{a}$  +  $V_{c}$  = 30. Solving, gives  $V_a = V_c = 40$  V. Hence,  $V_x$ 20 V 10 A d + = 20 V and  $V_d$  = 0. In other 4Ω  $V_{O}$ words, TEC and NEC are just short circuits,

- 1. Determine  $V_0$  assuming  $I_{SRC}$  = 0.25 A.
  - A. 4 V
  - B. 1 V
  - C. 5 V
  - D. 2 V
  - E. 3 V

**Solution:** The two 5  $\Omega$  resistances can be combined in parallel to give a 2.5  $\Omega$  resistance, and the two 10  $\Omega$  resistances can be combined in parallel to give a 5  $\Omega$  resistance carrying a current of 2*I*<sub>x</sub>, as shown. It follows that *I*<sub>SRC</sub> – 2*I*<sub>x</sub> =

0.5
$$I_x$$
, or  $I_x = \frac{I_{SRC}}{2.5}$  and  $V_0 = 10I_x$ , so that  
 $V_0 = 4I_{SRC}$ .



- 2. Determine  $I_{SRC}$  assuming  $V_{SRC}$  = 2 V and all resistances are 2  $\Omega$ .
  - A. 1.5 A
  - B. 3 A
  - C. 2.5 A
  - D. 2A
  - E. 1A

**Solution:** From symmetry the two currents  $I_x$  are equal and sum to zero. Hence,  $I_x = 0$  and the two resistors can be removed. The equivalent resistance seen by the source is  $(2 + 2)||(2 + 2) = 2 \Omega$ . It follows that  $I_{SRC} = V_{SRC}/2$ .





- 3. Determine  $V_O$  assuming  $I_{SRC} = 1$  A.
  - A. 7.5 V
  - B. 12.5 V
  - C. 5 V
  - D. 15 V
  - E. 10 V



Vo

/\/\\ 10 Ω

 $> 5 \Omega$ 

+

5Ω

**Solution:** The two current sources are equivalent to a current source  $I_{SRC}$  connected as shown, since KCL is the same at the two nodes. The resistance seen by the source is  $10||(5 + 5) = 5 \Omega$ . Hence,  $V_0 = 5I_{SRC}$ .

4. Determine Thevenin's resistance looking into terminals ab, assuming  $\alpha = 10$ .

- A.  $50 \Omega$
- B.  $25 \Omega$
- C. 100  $\Omega$
- D. 200  $\Omega$
- Ε. 20 Ω

**Solution:** When a test source  $V_T$  is applied at terminals ab, with the independent voltage source set to zero, it follows from the circuit that:

$$I_x = -\frac{2V_0}{2} = -V_0 = -V_T \text{ mA. } I_T = -\alpha I_x =$$

$$\alpha V_T$$
 mA. Hence,  $\frac{V_T}{I_T} = \frac{1}{\alpha} k\Omega \equiv \frac{1000}{\alpha} \Omega.$ 





- 5. Determine  $V_2$  so that  $V_x = 0$ , assuming  $V_1 = 4 \text{ V}$ .
  - A. 8 V
  - B. 6 V
  - C. 6.5 V
  - D. 7.5 V
  - E. 7 V

**Solution**: The 6  $\Omega$  and 3  $\Omega$  resistors do not carry any current. They can removed from the circuit, with nodes a and b being at the same voltage.  $V_1$  can be transformed to a current source  $V_1/4$  A in parallel with a 4  $\Omega$ resistor. The total current is  $(0.25V_1 + 2)$  A in parallel with 2  $\Omega$ .  $V_2$  is the voltage of node a, which gives:  $V_2 = 2(0.25V_1 + 2) = (0.5V_1 + 4)$ V.



6. Derive the mesh current equations in terms of  $I_1$ ,  $I_2$ , and  $I_3$ . DO NOT SOLVE THE EQUATIONS

**Solution:** Considering the voltage drop  $V_{ab}$ as a unit, the equation for mesh 1 is:  $(10 + 5)I_1 - 5I_3 = 12 - V_{ab}$ The mesh-current equation for mesh 2 is:  $(20 + 5)I_2 - 5I_3 = V_{ab}$ Adding these two equations:  $15I_1 + 25I_2 - 10I_3 = 12$ The remaining equations are:  $I_3 = 6$ , and  $I_2 - I_1 = 2I_x = 2(I_2 - I_3)$ , or

 $I_1 + I_2 - 2I_3 = 0$ 



Note that if the 15  $\Omega$  resistor is denoted by *R* and the conventional mesh-current procedure is applied, the term in *R* cancels out. Thus, for mesh 1:

 $(10 + 5 + R)I_1 - RI_2 - 5I_3 = 12 - V_x$ , where  $V_x$  is the voltage drop across dependent current source in the direction of  $I_1$ . For mesh 2,  $-RI_1 + (20 + 5 + R)I_2 - 5I_3 = V_x$ . Adding these two equations gives the same equation as before.

If these equations are solved,  $I_1 = 22.8 \text{ A}$ ,  $I_2 = -10.8 \text{ A}$ ,  $I_x = -16.8 \text{ A}$ ,  $V_x = -804 \text{ V}$ .

7. Determine Thevenin's 21<sub>x</sub> equivalent circuit seen 6Ω 2Ω 4Ω between terminals a and b ⊖ a  $I_x$ 6 A 3Ω 10 V  $\geq 4 \Omega$  $2\Omega$ 1V Ob Solution: Method 1: Leave the circuit as it is. Considering the mesh on the RHS,  $1 = 3I_x +$  $2I_x$  $4I_x + V_{cb}$ , where  $V_{cb} = 10 + 10$ 6Ω 2Ω 4Ω оa  $2I_{x}$ . Substituting for  $V_{cb}$  gives  $I_{x}$ 6 A  $I_x = -1$  A, so that  $V_{Th} = 4$  V. 3Ω Applying a test  $\leq 4 \Omega$  $2 \Omega \ge V_{cb}$ 10 V source with the independent 1V sources set to zero, the branch containing the 6 A Оb source is open circuited. The 6  $\Omega$  and 4  $\Omega$  resistors are in parallel  $I_T$ 4Ω а with one terminal at node b and the other  $I_x$ terminal connected to an open circuit. They do not carry any current and can be 1  $2I_x$ 2Ω **>**3Ω  $V_{T}$ removed. The circuit reduces to that shown.  $V_T = 4I_x + 2I_x = 6I_x$ , and  $I_T = I_x +$  $V_T/3$ . Substituting for  $I_x$  gives  $V_T/I_T = R_{Th} =$ b

2Ω.

If terminals ab are short circuited, KVL around the outermost loop gives:  $10 + 2I_x + 4I_x = 0$ , so that  $I_x$ = -5/3 A;  $I_{sc} = -I_x + 1/3 = 2$ A. It follows that  $R_{Th} = 4/2$  $= 2 \Omega$ .



<u>Method 2</u>: If the branch consisting of the 1 V source in series with 3  $\Omega$  is removed,  $I_x = 0$ , the dependent source becomes a short circuit, and the open-circuit voltage between terminals a and b is the same as that of the 10 V source. Hence  $V_{Th1} = 10$ V.

If a test current source  $I_T$  is applied between terminals a and b, with the independent sources set to zero, as before, and the 2  $\Omega$  resistor removed because it is in parallel with the  $2I_x$ ideal voltage source and is redundant as far as  $V_{ab}$  is concerned, the circuit reduces to that shown. The  $2I_T$  CCVS is equivalent to a 2  $\Omega$  resistor, which in series with the 4  $\Omega$ resistor gives  $R_{Th1} = 6 \Omega$ .

When the branch between terminals a and b is reintroduced, the circuit becomes as shown. With terminals a and b open circuited, the current in the circuit is 1. A in the direction of the circuit is 1. A in the direction of the current in the circuit is 1. A in the direction of the current in the circuit is 1. A in the direction of the current in the circuit is 1. A in the direction of the current in the circuit is 1. A in the direction of the current in the circuit is 1. A in the direction of the current in the circuit is 1. A in the direction of the current in the circuit is 1. A in the direction of the current in the circuit is 1. A in the direction of the current in the

and b open circuited, the current in the circuit is 1 A in the direction shown and  $V_{ab} = 4$  V. If the voltage sources are set to zero, the resistance seen between terminals ab is (6||3) = 2  $\Omega$ . Hence,  $V_{Th} = 4$  V and  $R_{Th} = 2 \Omega$ .





Find  $I_x$ .



## Problem 4

Find  $V_x$ .



- A) 130.9V
- B) -43.64V
- →C) 43.64V
  - D) -130.9V
  - E) None of the above

Find the power associated with the current source.



- A) 256W
- B) -200W
- C) 200W
- D) -256W
- $\rightarrow$  E) None of the above **176.9 W absorbed**

#### Problem 6

In the circuit below  $R_1$  is chosen such that  $I_3 = 1A$ . Find  $R_1$ .



- A)  $12.5\Omega$
- B) 16Ω
- C)  $25\Omega$
- $\rightarrow$ D) 6.25 $\Omega$ 
  - E) None of the above

Find  $I_x$ .



- → A) -6A
  - B) 6A
  - C) 16A
  - D) -16A
  - E) None of the above

## Problem 8

Find  $I_0$ .



- A) 1.15A
- →B) -0.65A
  - C) -1.15A
  - D) 0.65A
  - E) None of the above

Find the Thevenin equivalent resistance between a and b.



- →A) 333.33Ω
  - B) 250Ω
  - C)  $83.33\Omega$
  - D) 740.46Ω
  - E) None of the above

## Problem 10

Find the Thevenin equivalent voltage between a and b  $(V_{ab})$ .



Find the Thevenin equivalent resistance between a and b of the previous figure.

- A)  $6K\Omega$
- B)  $8K\Omega$
- C)  $4.5 \mathrm{K}\Omega$
- →D) 1.5KΩ
  - E) None of the above

## Problem 12

Find the Thevenin equivalent resistance between a and b.



- A)  $6\Omega$
- B)  $8.52\Omega$
- C) 14.28 $\Omega$
- $\rightarrow$ D) 10.52 $\Omega$ 
  - E) None of the above

Find  $V_1$ .



- →A) -1.22V
  - B) 1.22V
  - C) -1.57V
  - D) 1.57V
  - E) None of the above

Find the Thevenin Equivalent Voltage between A and B  $(V_{AB})$ .



## Problem 6

Find the Norton equivalent resistance between A and B.



- A) 3R
- B) 3R/2
- $\rightarrow$  C) R/3
  - D) R
  - E) None of the above

Find the Norton equivalent current source between A and B.



- A) -2.28I(A)
- **→**B) -1.24I(A)
  - C) -3.21I(A)
  - D) -6.42I(A)
  - E) None of the above