Determine all the currents and voltages in the circuit using superposition and mark them on the circuit diagram.

Solution:

Figure 10
12. Find the Thevenin equivalent of the circuit shown in figure 10 .
a) $\mathrm{V}_{\mathrm{th}}=10 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{th}}=1 \mathrm{~K}$
b) $\mathrm{V}_{\text {th }}=0 \mathrm{~V}$ and $\mathrm{R}_{\text {th }}=0.1 \mathrm{~K}$
c) $\mathrm{V}_{\text {th }}=10 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{th}}=2 \mathrm{~K}$
d) $\mathrm{V}_{\mathrm{th}}=1 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{th}}=1 \mathrm{~K}$
e) None of the above
10. For the circuit shown, find the Thevenin resistance seen by terminals ab

A. 4Ω
B. 5Ω
\rightarrow C. 3Ω
D. 6Ω
E. None of the above
2. In the circuit of Figure 1, the Thevenin resistance as seen

from terminals ab is:

\rightarrow ai? $100 / 30$
b. $100 / 9 \Omega$
$50 / 90$
10月
Refer to figures below
d. 10Ω None of the above
resistance, across terminals $a-b$, is:
a. 20Ω
b. 5Ω
\rightarrow c. -208
10Ω
None of the above

25. Consider the circuit below, connected for a long time. All resistors are in Ohm,capacitors in Farads and inductors in Henrys. Find the current I.

Problem 1 (10 pts)

Consider the circuit shown below.

1. We, first, set the current sources 5 mA and 10 mA to zero. Determine the equivalent resistance seen by the 20 mA current source. (5 pts)

$$
R_{1}=(4+1)\left\|4=20 / 9 \mathrm{k} \Omega ; R_{2}=20 / 9+2=38 / 9 \mathrm{k} \Omega, R_{\mathrm{eq}}=2\right\|(38 / 9)=19 / 14=1.36 \mathrm{k} \Omega
$$

2. Write the node voltage equations by inspections (do not solve) (5 pts)

| $1.75 V_{1}-0.25 V_{2}$ | - | V_{3} | $=$ | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $-0.25 V_{1}+$ | V_{2} | - | $0.25 V_{3}$ | $=5$ |
| $-V_{1}$ | $0.25 V_{2}+$ | $1.25 V_{3}$ | $=5$ | |

Problem 2 (10 pts)

Consider the circuit shown below

1. We, first, set the 4 V source and the 10 V source to zero. Determine the equivalent resistor seen by the 8 V voltage source. (5 pts)

$$
R_{e q}=5+(2| | 4\|4\| 1)=5+0.5=5.5 \Omega
$$

2. Write the mesh-current equations. (do not solve). (5 pts)

| $7 I_{1}-2 I_{2}-0 I_{3}$ | $-0 I_{4}$ | $=$ | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $-2 I_{1}+6 I_{2}-4 I_{3}$ | $-0 I_{4}$ | $=$ | 4 |
| $0 I_{1}-4 I_{2}+5 I_{3}$ | $-I_{4}$ | $=$ | -10 |
| $0 I_{1}-0 I_{2}-I_{3}+5 I_{4}$ | $=$ | -4 | |

Figure 20
21. Determine the resistance between terminals a b in figure 20 .

1. Determine the equivalent resistance between terminals a and b, given that all resistances are 1Ω.
A. 5Ω
B. 4.5Ω
C. 4Ω
D. 3Ω
E. None of the above

Solution: The resistances not connected directly to
 terminals a and b form a balanced bridge. Hence the resistance across the bridge does not carry any current and can be replaced by an open circuit or a short circuit. If replaced by an open circuit, $R_{e q}=1+2 \| 2+1=3 \Omega$.

Problem 2

Find the power consumed by the 50 ohm resistor in the circuit shown below
A) $P=0.246 \mathrm{~W}$
B) $P=0.692 \mathrm{~W}$
C) $P=2.358 \mathrm{~W}$
D) $P=5.100 \mathrm{~W}$
E) None of the above

Problem 6

Given the circuit above, determine the current I_{x} if voltage-controlled current source has $\mathrm{B}=0.2$:
A) 0
B) 0.285
C) 1.285
D) 0.5
E) None of the above

Problem 11

What is I_{0} ?
A) 1 A
\rightarrow B) -1 A
C) 2 A
D) -2 A
E) None of the above

Problem 5

The following values are given:
$\mathrm{I}_{\mathrm{A}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=2 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=1 \mathrm{k} \Omega$,
What is the value of V_{bc} ?
\rightarrow A) 4 V
B) -2 V
C) 1 V
D) 5 V
E) None of the above

Problem 9

Find I_{x}.
A) 4.2 A
B) 3.5 A
\rightarrow C) 2.25 A
D) 4.75 A
E) None of the above

Problem 10

Find the Thevenin equivalent across terminals a and b.
A) $\mathrm{R}_{\mathrm{TH}}=40 \Omega, \mathrm{~V}_{\mathrm{TH}}=6.67 \mathrm{~V}$
B) $\mathrm{R}_{\mathrm{TH}}=40 \Omega, \mathrm{~V}_{\mathrm{TH}}=-6.67 \mathrm{~V}$
\rightarrow C) $\mathrm{R}_{\mathrm{TH}}=80 \Omega, \mathrm{~V}_{\mathrm{TH}}=12 \mathrm{~V}$
D) $\mathrm{R}_{\mathrm{TH}}=80 \Omega, \mathrm{~V}_{\mathrm{TH}}=-12 \mathrm{~V}$
E) None of the above

Problem 11

Find the current, I_{0}, flowing through the dependant source.
A) 9.4 A
B) 14 A
C) -3 A
D) -12 A
E) None of the above.

Problem 12

Find the voltage, V, across the 2A source.
A) 400 V
B) 140 V
C) 6 V
D) -300 V
E) None of the above

P3.1.25 Determine V_{o} in Fig. P3.1.25 using nodevoltage analysis.

Figure P3.1.25
Solution: The node-voltage equation for node a is: $V_{a}-$ $0.5 V_{b}-0.5 V_{c}=10$; substituting $V_{b}=20 \mathrm{~V}: V_{a}-0.5 V_{c}=20$. For node c: $-0.5 V_{a}+0.75 V_{c}=-l_{y}$; for node d: $-0.5 V_{b}+0.75 V_{d}=$ I_{y}; adding and substituting for $V_{b}:-0.5 V_{a}+0.75 V_{c}+0.75 V_{d}=$
10. For the dependent source:

$V_{d}-V_{c}=2 V_{x}=2 V_{b}-2 V_{a}$, or $2 V_{a}-V_{c}+V_{d}=40$. Solving, $V_{a}=40 \mathrm{~V}, V_{c}=40 \mathrm{~V}, V_{d}=V_{o}=0$.

P3.1.26 Determine V_{0} in Fig. P3.1.25 using mesh-current analysis.
Solution For mesh 2:
$-2 I_{1}+6 I_{2}-2 I_{4}=$
$-2 V_{x}$; substituting $I_{1}=10$ and $V_{x}=-2 I_{2}: I_{2}-I_{4}=10$. For mesh 3: $-4 I_{1}+8 I_{3}-4 I_{4}=$ $2 V_{x}$;
$I_{2}+2 I_{3}-I_{4}=10$. For mesh 4:
$-2 I_{2}-4 I_{3}+6 I_{4}=-20$, or $-I_{2}-$
$2 I_{3}+3 I_{4}=-10$. Solving, $I_{2}=$ $10 \mathrm{~A}, I_{3}=0$, and $I_{4}=0$,

which gives $V_{O}=0$.

P3.2.12 Determine V_{O} in Fig. P3.1.19 using superposition and calculate the power dissipated in the 5Ω resistor.

Figure P3.1.19

Solution: With the 2 A source acting alone, the circuit becomes as shown. The source current flows through the 5Ω resistor, so that $V_{O 1}=10$ V . Similarly, when the 4 A source is applied alone, $V_{O 2}=20 \mathrm{~V}$. From superposition, $V_{O}=$ $V_{O 1}+V_{O 2}=30 \mathrm{~V}$. The dependent source does not contribute to V_{0}.

Power dissipated in the 5Ω resistor is $\frac{(30)^{2}}{5}=180 \mathrm{~W}$.

P3.2.13 Determine I_{0} in Fig.

P3.1.21 using superposition and calculate the power dissipated in the 5 S resistor.

Figure P3.1.21

Solution: With the 2 V source acting alone, and the 4 V source replaced by a short circuit, the circuit becomes as shown. The source voltage is applied across the 5 S resistor, so that $I_{O 1}=10 \mathrm{~A}$. Similarly,
 when the 4 V source is applied alone, $I_{02}=20 \mathrm{~A}$. From superposition, $I_{\mathrm{O}}=I_{01}+I_{02}=30 \mathrm{~A}$. The dependent source does not contribute to I_{0}. Power dissipated in the 5 S resistor is $\frac{(30)^{2}}{5}=180 \mathrm{~W}$.

P4.1.8 Derive TEC between terminals ab in Fig. P4.1.8.
Solution: Let us first remove the 20Ω resistor and reapply it later. On open circuit, each 1 A source produces a 10 V drop across the resistor in parallel with it. Hence $V_{o c 1}=20 \mathrm{~V}$. On short circuit, $I_{s c}=1 \mathrm{~A}$, so that $R_{T h 1}=20 \Omega$. When the 20 Ω resistor is added at terminals $\mathrm{ab}, V_{T h}=20 \times(20 / 40)=10 \mathrm{~V}$ and $R_{T h}=(20| | 20)=10 \Omega$

Figure P4.1.8

P4.1.9 Derive TEC between terminals ab in Fig. P4.1.9.
Solution: On open circuit, KVL around the upper mesh gives $20 I_{x}=20$, or $I_{x}=1 \mathrm{~A}$. It follows that $V_{T h}=V_{o c}=20$ $+20 I_{x}=40 \mathrm{~V}$.

On short circuit, the current in the 10Ω resistor is 2 A . KVL around the upper mesh gives: $20=5\left(I_{x}-I_{s c}\right)+$ $5\left(3 I_{x}-I_{s c}\right)$, or $2 I_{x}-I_{s c}=2$; from KCL at node c: $3 I_{x}-I_{s c}+$ $2=I_{x}$, or $2 I_{x}-I_{s c}=-2$. This means that I_{x} and $I_{s c}$ are indeterminate. This suggests that $R_{T h}=0$, which would make $I_{s c}$ indeterminate. To verify this, we apply a test
 source of 1 A , with the voltage source set to zero. Then, $4 I_{x}+2=0$, so that $I_{x}=-0.5 \mathrm{~A}$ and $V_{T}=$ $2(-0.5)+1=0$. Hence $R_{T h}=0$.

Derive NEC between the short-circuited terminals ab in Fig. P2.1.4.

Solution: If a test voltage is applied, KCL at node a gives $I_{\phi}=I_{T}+3$. From KCL at node $\mathrm{c}, I_{T}+3+10=$ 5 , or $I_{T}=-8 \mathrm{~A}$, irrespective of V_{T}. It follows that $I_{N}=$ 8 A . Since I_{T} is independent of V_{T}, it means that there is no resistance in parallel with the current source I_{N}.

Figure P2.1.4

P4.1.11 Determine V_{O} in Fig. P3.1.7 using TEC.

Solution: Open-circuit voltage: When only the 10 V source is applied, $V_{T h 1}=\frac{10}{30} \times 10=\frac{10}{3} \mathrm{~V}$. When only the 20 V source is applied $V_{T h 2}=20$ V. Hence, $V_{T h}=70 / 3 V$. With both sources set to zero, $R_{T h}=10| | 20=20 / 3 \Omega$. It follows that V_{O} $=\frac{40}{40+20 / 3} \times \frac{70}{3}=20 \mathrm{~V}$.

Figure P3.1.7

P4.1.12 Determine I_{O} in Fig. P3.1.9 using NEC.

Figure P3.1.9
Solution: With the 10 A source acting alone, $I_{N 1}=\frac{10}{30} \times 10=\frac{10}{3} \mathrm{~A}$. With the 20 A source acting alone, $I_{N 2}=20 \mathrm{~A}$.

Hence, $I_{N}=70 / 3 \mathrm{~A}$.
The conductance between terminals bc is $\frac{20 \times 10}{20+10}=\frac{20}{3} \mathrm{~S}$. It follows from NEC that $I_{O}=\frac{40}{40+20 / 3} \times \frac{70}{3}=20 \mathrm{~A}$.

P4.1.15 Determine V_{O} in Fig. P3.1.15 using TEC.

Figure P3.1.15
Solution: On open circuit, $I_{x}=0$, and the dependent source becomes an open circuit. It follows that $V_{T h}=10 \mathrm{~V}$. On short circuit, the circuit becomes as shown, where $I_{x}=I_{S C}$ and the dependent source becomes $5 I_{\text {sc }}$. It follows from KCL that: $I_{S C}=5 I_{S C}+\frac{10}{4}$, which gives $I_{S C}=-\frac{5}{8} \mathrm{~A}$, and $R_{S C}=-16 \Omega$. Hence

$V_{O}=\frac{4}{4-16} \times 10=-\frac{10}{3} V$.

P4.1.16 Determine I_{O} in Fig. P3.1.17 using NEC.

Figure P3.1.17

Solution: On open circuit, 10 A flows through the 4 S resistor, so that $V_{o c}=5 V_{o c}$ $+\frac{10}{4}$, which gives $V_{o c}=-\frac{5}{8} \mathrm{~A}$. On short circuit, $V_{x}=0$ and the dependent source is zero, so that $I_{N}=10 \mathrm{~A}$. This makes $G_{N}=-16 \mathrm{~S}$. It follows that
$I_{O}=\frac{4}{4-16} \times 10=-\frac{10}{3} A$.
 by the source is infinite. If the 5Ω resistor is

Figure P3.1.19
 replaced by a short circuit, $I_{S C}=6 \mathrm{~A}$. It follows that the circuit does not possess a TEC between the specified terminals, only an NEC consisting of an ideal current source of 6 A . This gives V_{o} $=30 \mathrm{~V}$.

P4.1.18 Determine I_{O} in Fig. P3.1.21 using TEC.
Solution: If the 5 S
resistor is replaced by a short circuit, the circuit is invalid, as two unequal voltage sources will be connected in series, and $I_{0} \rightarrow \infty$. If a test source is applied in place of the 5 S resistor and the voltage sources

replaced by short
circuits, the resistance seen by the source is zero. If the 5 S resistor is replaced by an open circuit, $V_{T h}=6 \mathrm{~V}$. It follows that the circuit does not possess an NEC between the specified terminals, only a TEC consisting of an ideal voltage source of 6 V . This gives $I_{O}=30 \mathrm{~A}$.

P4.1.19 Determine I_{O} in Fig. P3.1.23 using NEC.

Figure P3.1.23
Solution: With the 4 S resistor replaced by a short circuit, I_{O} can be obtained from mesh-current analysis. The mesh current equations are the same as those for P3.1.24 but with a coefficient of 0.5 for I_{4} in the equation for mesh 4 . The equations are:
$I_{1}-0.5 I_{2}=9 ;-0.5 I_{1}+0.75 I_{2}+0.5 I_{4}=-1 ;$ and $2 I_{1}-I_{2}+I_{4}=-4$. Solving, $I_{4}=I_{0}=-$ 22 A .
If a test source is substituted for the 4 S resistor, with the independent source set to zero, it is seen from KCL at the middle node that $I_{T}=0$, which means that the source resistance is infinite. The circuit does not possess a TEC between the specified terminals, only an NEC.

Fig. P3.1.25 using TEC.

Figure P3.1.25
Solution: If a current source is applied at node d, with the independent sources set to zero, it is seen that $V_{a c}=V_{x}$, so that $V_{b d}=0$ and $V_{O}=0$. In other words the source sees a short circuit and $R_{\text {src }}=0$. If the resistor between node d and the reference node is replaced by an open circuit, the node-voltage equation at node a is: $V_{a}-0.5 V_{c}=20$, and the node voltage equation at node c is: $-0.5 V_{a}+0.75 V_{c}=-l_{y}$,
 where $I_{y}=$
$0.5\left(V_{c}+2 V_{x}-20\right)=$
$0.5 V_{c}+V_{a}-30$. Substituting for
$I_{y}: 0.25 V_{a}+V_{c}=30$. Solving, gives $V_{a}=V_{c}=40 \mathrm{~V}$. Hence, V_{x} $=20 \mathrm{~V}$ and $V_{d}=0$. In other words, TEC and NEC are just short circuits,

1. Determine V_{O} assuming $I_{S R C}=0.25 \mathrm{~A}$.
A. 4 V
B. 1 V
C. 5 V
D. 2 V
E. 3 V

Solution: The two 5Ω resistances can be combined in parallel to give a 2.5Ω resistance, and the two 10Ω resistances can be combined in parallel to give a 5Ω resistance carrying a current of $2 I_{x}$, as shown. It follows that $I_{S R C}-2 I_{x}=$
 $0.5 I_{x}$, or $I_{x}=\frac{I_{\text {SRC }}}{2.5}$ and $V_{O}=10 I_{x}$, so that $V_{O}=4 I_{S R C}$.
2. Determine $I_{S R C}$ assuming $V_{S R C}=2 \mathrm{~V}$ and all resistances are 2Ω.
A. 1.5 A
B. 3 A
C. 2.5 A
D. 2 A
E. 1 A

Solution: From symmetry the two currents I_{x} are equal and
 sum to zero. Hence, $I_{x}=0$ and the two resistors can be removed. The equivalent resistance seen by the source is $(2+2) \|(2+2)=2 \Omega$. It follows that $I_{S R C}=V_{S R C} / 2$.

3. Determine V_{O} assuming $I_{S R C}=1 \mathrm{~A}$.
A. 7.5 V
B. 12.5 V
C. 5 V
D. 15 V
E. 10 V

Solution: The two current sources are equivalent to a current source $I_{S R C}$ connected as shown, since KCL is the same at the two nodes. The resistance seen by the source is $10|\mid(5+5)=5 \Omega$. Hence, $V_{O}=5 I_{\text {SRC }}$.

4. Determine Thevenin's resistance looking into terminals ab, assuming $\alpha=10$.
A. 50Ω
B. 25Ω
C. 100Ω
D. 200Ω
E. 20Ω

Solution: When a test source V_{T} is applied at terminals ab, with the independent voltage source set to zero, it follows from the circuit that:
$I_{x}=-\frac{2 V_{O}}{2}=-V_{O}=-V_{T} \mathrm{~mA} . I_{T}=-\alpha I_{x}=$

$\alpha V_{T} \mathrm{~mA}$. Hence, $\frac{V_{T}}{I_{T}}=\frac{1}{\alpha} \mathrm{k} \Omega \equiv \frac{1000}{\alpha} \Omega$.
5. Determine V_{2} so that $V_{x}=0$, assuming $V_{1}=4 \mathrm{~V}$.
A. 8 V
B. 6 V
C. 6.5 V
D. 7.5 V
E. 7 V

Solution: The 6Ω and 3Ω resistors do not carry any current. They can removed from the circuit, with nodes a and b being at the same voltage. V_{1} can be transformed to a current source $V_{1} / 4 \mathrm{~A}$ in parallel with a 4Ω resistor. The total current is $\left(0.25 \mathrm{~V}_{1}+2\right) \mathrm{A}$ in parallel with $2 \Omega . V_{2}$ is the voltage of node a, which gives: $V_{2}=2\left(0.25 V_{1}+2\right)=\left(0.5 V_{1}+4\right)$ V.

6. Derive the mesh current equations in terms of I_{1}, I_{2}, and I_{3}. DO NOT SOLVE THE EQUATIONS

Solution: Considering the voltage drop $V_{a b}$ as a unit, the equation for mesh 1 is:
$(10+5) I_{1}-5 I_{3}=12-V_{a b}$
The mesh-current equation for mesh 2 is:
$(20+5) I_{2}-5 I_{3}=V_{a b}$
Adding these two equations:
$15 I_{1}+25 I_{2}-10 I_{3}=12$
The remaining equations are:
$I_{3}=6$, and

$I_{2}-I_{1}=2 I_{\mathrm{x}}=2\left(I_{2}-I_{3}\right)$, or
$I_{1}+I_{2}-2 I_{3}=0$
Note that if the 15Ω resistor is denoted by R and the conventional mesh-current procedure is applied, the term in R cancels out. Thus, for mesh 1 :
$(10+5+R) I_{1}-R I_{2}-5 I_{3}=12-V_{x}$, where V_{x} is the voltage drop across dependent current source in the direction of I_{1}. For mesh $2,-R I_{1}+(20+5+R) I_{2}-5 I_{3}=V_{x}$. Adding these two equations gives the same equation as before.

If these equations are solved, $I_{1}=22.8 \mathrm{~A}, I_{2}=-10.8 \mathrm{~A}, I_{x}=-16.8 \mathrm{~A}, V_{x}=-804 \mathrm{~V}$.
7. Determine Thevenin's equivalent circuit seen between terminals a and b

Solution:

Method 1: Leave the circuit as it is. Considering the mesh on the RHS, $1=3 I_{x}+$ $4 I_{x}+V_{c b}$, where $V_{c b}=10+$ $2 I_{x}$. Substituting for $V_{c b}$ gives $I_{x}=-1 \mathrm{~A}$, so that $V_{T h}=4 \mathrm{~V}$. Applying a test source with the independent sources set to zero, the branch containing the 6 A
 source is open circuited.

The 6Ω and 4Ω resistors are in parallel with one terminal at node b and the other terminal connected to an open circuit. They do not carry any current and can be removed. The circuit reduces to that shown. $V_{T}=4 I_{x}+2 I_{x}=6 I_{x}$, and $I_{T}=I_{x}+$ $V_{T} / 3$. Substituting for I_{x} gives $V_{T} / I_{T}=R_{T h}=$ 2Ω.

If terminals ab are short circuited, KVL around the outermost loop gives: $10+21_{x}+41_{x}=0$, so that I_{x} $=-5 / 3 A ; I_{s c}=-I_{x}+1 / 3=2$ A. It follows that $R_{T h}=4 / 2$ $=2 \Omega$.

Method 2: If the branch consisting of the 1 V source in series with 3Ω is removed, $I_{x}=0$, the dependent source becomes a short circuit, and the open-circuit voltage between terminals a and b is the same as that of the 10 V source. Hence $V_{T h 1}=10$ V .

If a test current source I_{T} is applied between terminals a and b, with the independent sources set to zero, as before, and the 2Ω resistor removed because it is in parallel with the $2 I_{x}$ ideal voltage source and is redundant as far as $V_{a b}$ is concerned, the circuit reduces to that shown. The 21_{T} CCVS is equivalent to a 2Ω resistor, which in series with the 4Ω resistor gives $R_{T h 1}=6 \Omega$.

When the branch between terminals a and b is reintroduced, the circuit becomes as shown. With terminals a
 and b open circuited, the current in the circuit is 1 A in the direction shown and $V_{a b}=4 \mathrm{~V}$. If the voltage sources are set to zero, the resistance seen between terminals ab is (6||3) $=2 \Omega$. Hence, $V_{T h}=4 \mathrm{~V}$ and $R_{T h}=2 \Omega$.

Problem 3

Find I_{x}.

A) 230.8 A
B) 76.92 A
C) -76.92 A
D) -230.8 A
\rightarrow E) None of the above -76.92 mA

Problem 4

Find V_{x}.

A) 130.9 V
B) -43.64 V
\rightarrow C) 43.64 V
D) -130.9 V
E) None of the above

Problem 5

Find the power associated with the current source.

A) 256 W
B) -200 W
C) 200 W
D) -256 W
\rightarrow E) None of the above 176.9 W absorbed

Problem 6

In the circuit below R_{1} is chosen such that $I_{3}=1 A$. Find R_{1}.

A) 12.5Ω
B) 16Ω
C) 25Ω
\rightarrow D) 6.25Ω
E) None of the above

Problem 7

Find I_{x}.

\rightarrow A) -6A
B) 6 A
C) 16 A
D) -16 A
E) None of the above

Problem 8

Find I_{0}.

A) 1.15 A
\rightarrow B) -0.65 A
C) -1.15 A
D) 0.65 A
E) None of the above

Problem 9

Find the Thevenin equivalent resistance between a and b .

\rightarrow A) 333.33Ω
B) 250Ω
C) 83.33Ω
D) 740.46Ω
E) None of the above

Problem 10

Find the Thevenin equivalent voltage between a and $\mathrm{b}\left(V_{a b}\right)$.
$\mathrm{Vab}=-1 \mathrm{~V}$

Problem 11

Find the Thevenin equivalent resistance between a and b of the previous figure.
A) $6 \mathrm{~K} \Omega$
B) $8 \mathrm{~K} \Omega$
C) $4.5 \mathrm{~K} \Omega$
\rightarrow D) $1.5 \mathrm{~K} \Omega$
E) None of the above

Problem 12

Find the Thevenin equivalent resistance between a and b .

A) 6Ω
B) 8.52Ω
C) 14.28Ω
\rightarrow D) 10.52Ω
E) None of the above

Problem 4
Find V_{1}.

\rightarrow A) -1.22 V
B) 1.22 V
C) -1.57 V
D) 1.57 V
E) None of the above

Problem 5

Find the Thevenin Equivalent Voltage between A and $\mathrm{B}\left(V_{A B}\right)$.

A) RI
B) -3 RI
\rightarrow C) -RI
D) 3 RI
E) None of the above

Problem 6

Find the Norton equivalent resistance between A and B.

A) $3 R$
B) $3 R / 2$
\rightarrow C) $\mathrm{R} / 3$
D) R
E) None of the above

Problem 7

Find the Norton equivalent current source between A and B.

A) $-2.28 \mathrm{I}(\mathrm{A})$
\rightarrow B) $-1.24 \mathrm{I}(\mathrm{A})$
C) $-3.21 \mathrm{I}(\mathrm{A})$
D) $-6.42 \mathrm{I}(\mathrm{A})$
E) None of the above

