Quiz 3 - December 18, 2010

4\%

1. A current $i=I_{m} \cos \left(\omega t+30^{\circ}\right)$ flows through an impedance $(5-j 5) \Omega$. Determine the rms phasor voltage across the impedance if $I_{m}=2.5 \mathrm{~A}$.
Solution: The phasor current is $I_{m} \angle 30^{\circ}$ A. The impedance is $5 \sqrt{2} \angle-45^{\circ} \Omega$. The phasor voltage is $5 I_{m} \sqrt{2} \angle-15^{\circ} \mathrm{V}$ peak value or $5 I_{m} \angle-15^{\circ} \mathrm{V} \mathrm{rms}$.

Version 1: $I_{m}=2.5 \mathrm{~A}, \mathrm{~V}=12.5 \angle-15^{\circ} \mathrm{V} \mathrm{rms}$
Version 2: $I_{m}=5 \mathrm{~A}, \mathrm{~V}=25 \angle-15^{\circ} \mathrm{V}$ rms
Version 3: $I_{m}=7.5 \mathrm{~A}, \mathrm{~V}=37.5 \angle-15^{\circ} \mathrm{V}$ rms
Version 4: $I_{m}=10 \mathrm{~A}, \mathrm{~V}=50 \angle-15^{\circ} \mathrm{V}$ rms
Version 4: $I_{m}=12.5 \mathrm{~A}, \mathrm{~V}=62.5 \angle-15^{\circ} \mathrm{V}$ rms.

4\%
2. In the phasor diagram shown, phasor \mathbf{A} is a current, the other phasors B, C, and D are voltages. To which of the following combinations of circuit elements does this phasor diagram apply?
A. R in series with L
B. R in series with C

C. R in parallel with C
D. L in series with C
E. L in parallel with C.

Solution: The phasor diagram represents a series $R L$ circuit, Phasor \mathbf{B} is the voltage across R. Phasor \mathbf{C} is the voltage across L, leading the current by 90°, and phasor \mathbf{D} is the voltage across the series combination.

4\%
3. Determine the input impedance $Z_{i n}$ assuming $R=2 \Omega$.
Solution: If a test voltage source $\mathbf{V}_{\mathbf{T}}$ is applied, $\mathbf{I}_{\mathbf{T}}$
$=\left(\frac{1}{R+j 2}-\frac{1}{R-j 2}\right) \mathbf{V}_{\mathbf{T}}$, or $Z_{\text {in }}=$

$\frac{1}{\left(\frac{1}{R+j 2}-\frac{1}{R-j 2}\right)}=\frac{(R+j 2)(R-j 2)}{R-j 2-R-j 2}=\frac{R^{2}+4}{-j 4}=j\left(1+\frac{R^{2}}{4}\right) \Omega$. Alternatively, the dependent source is equivalent to an impedance $-(R-j 2)$ and $Z_{i n}=(R+j 2) \|[-(R-j 2)] \Omega$.

Version 1: $R=2 \Omega ; Z_{\text {in }}=j 2 \Omega$
Version 2: $R=3 \Omega ; Z_{\text {in }}=j 3.25 \Omega$
Version 3: $R=4 \Omega ; Z_{i n}=j 5 \Omega$
Version 4: $R=5 \Omega ; Z_{i n}=j 7.25 \Omega$
Version 5: $R=6 \Omega ; Z_{i n}=j 10 \Omega$.

4\%
4. Determine Z_{Y} so that V_{L} is in phase with $\mathrm{V}_{\mathrm{SRC}}$, assuming $X=-5 \Omega$ with R_{L} and $V_{\text {SRC }}$ unknown.

Solution: TEC as seen from terminals a and b

will have $Z_{T h}=j X / 2$. For \mathbf{V}_{L} to be in phase with
$V_{\mathrm{SRC}}, Z_{Y}=-j X / 2$.
Version 1: $X=-5 \Omega ; Z_{Y}=j 2.5 \Omega$
Version 2: $X=5 \Omega ; Z_{Y}=-j 2.5 \Omega$
Version 3: $X=-10 \Omega ; Z_{Y}=j 5 \Omega$
Version 4: $X=10 \Omega ; Z_{Y}=-j 5 \Omega$

Version 5: $X=-15 \Omega ; Z_{Y}=j 7.5 \Omega$.

4\%
5. Determine $\mathbf{V}_{\mathbf{o}}$ if $\omega=1 \mathrm{krad} / \mathrm{s}$ and $\mathbf{V}_{\mathbf{S R C}}=3 \mathrm{~V}$.

Solution: $\omega C R=1$;
$\frac{\mathrm{V}_{\mathrm{O}}}{\mathrm{V}_{\mathrm{SRC}}}=\frac{R /(1+j \omega C R)}{R /(1+j \omega C R)+R-j / \omega C}=$

$$
\frac{R /(1+j)}{R /(1+j)+R-j / \omega C}=\frac{1 /(1+j)}{1 /(1+j)+1-j}=\frac{1}{1+(1+j)(1-j)}=\frac{1}{1+1-j^{2}}=\frac{1}{3}
$$

Version 1: $\mathrm{V}_{\mathrm{SRC}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{SRC}} / 3=1 \mathrm{~V}$
Version 2: $\mathrm{V}_{\mathrm{SRC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{SRC}} / 3=1.5 \mathrm{~V}$
Version 3: $\mathbf{V}_{\text {SRC }}=6 \mathrm{~V}$; $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {SRC }} / 3=2 \mathrm{~V}$
Version 4: $\mathrm{V}_{\mathrm{SRC}}=7.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{SRC}} / 3=2.5 \mathrm{~V}$
Version 5: $\mathrm{V}_{\mathrm{SRC}}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{SRC}} / 3=3 \mathrm{~V}$.

4\%
6. Two coils are wound on a core of high permeability. Coil 1 has 100 turns and coil 2 has 400 turns. A current of 1 A in coil 1 , with coil 2 open circuited, produces a core flux of 0.5 mWb . Determine the magnitude of the core flux produced by a current of 0.8 A in coil 2 , with coil 1 open circuited.
Solution: From the definition of mutual inductance, $\frac{N_{2} \phi_{21}}{i_{1}}=\frac{N_{1} \phi_{12}}{i_{2}}$, so that $\phi_{12}=\frac{i_{2}}{i_{1}} \frac{N_{2}}{N_{1}} \phi_{21}=$ $\frac{0.8}{1} \frac{400}{100} \phi_{21}=3.2 \phi_{21}$.
Version 1: $\phi_{21}=0.5 \mathrm{mWb} ; \phi_{12}=3.2 \times 0.5=1.6 \mathrm{mWb}$
Version 2: $\phi_{21}=0.6 \mathrm{mWb} ; \phi_{12}=3.2 \times 0.6=1.92 \mathrm{mWb}$
Version 3: $\phi_{21}=0.7 \mathrm{mWb} ; \phi_{12}=3.2 \times 0.7=2.24 \mathrm{mWb}$
Version 4: $\phi_{21}=0.8 \mathrm{mWb} ; \phi_{12}=3.2 \times 0.8=2.56 \mathrm{mWb}$
Version 5: $\phi_{21}=0.9 \mathrm{mWb} ; \phi_{12}=3.2 \times 0.9=2.88 \mathrm{mWb}$.

4\%
7. Determine the stored magnetic energy under dc conditions, assuming $V_{S R C}=1 \mathrm{~V}$.

Solution: The branch containing the capacitor carries no current under dc conditions. The current in the other two branches is $V_{S R C} / 0.5 \mathrm{~A}$ and the stored magnetic energy is $W=$
$\frac{1}{2}\left(L_{1} I^{2}+L_{1} I^{2}+2 M I^{2}\right)=$
$\frac{1}{2}\left(\frac{V_{S R C}}{0.5}\right)^{2}(2+3+2 \times 1)=14 V_{S R C}^{2}$.

Version 1: $V_{S R C}=1 \mathrm{~V} ; W=6 \times 1=14 \mathrm{~J}$
Version 2: $V_{S R C}=1.5 \mathrm{~V} ; W=6 \times 2.25=31.5 \mathrm{~J}$
Version 3: $V_{S R C}=2 \mathrm{~V} ; W=6 \times 4=56 \mathrm{~J}$
Version 4: $V_{S R C}=2.5 \mathrm{~V} ; W=6 \times 6.25=87.5 \mathrm{~J}$
Version 5: $V_{S R C}=3 \mathrm{~V} ; W=6 \times 9=126 \mathrm{~J}$.
8. Given $v_{S R C}=6 \cos \omega t$, where ω is unknown and $k=0.97$. Determine X so that no power is dissipated in the circuit.
Solution: Considering mesh currents $\mathbf{I}_{\mathbf{1}}$ and $\mathbf{I}_{\mathbf{2}}$, then for no power dissipation, $\boldsymbol{I}_{\mathbf{2}}=0$. The meshcurrent equation for mesh 2 is:

$$
-(j \omega M+j X) \mathbf{I}_{1}+(j 40+j X+10) \mathbf{I}_{2}=0
$$

Version 2: $k=0.96 ; X=-0.96 \times 20=-19.2 \Omega$
Version 3: $k=0.95 ; X=-0.95 \times 20=-19 \Omega$
Version 4: $k=0.94 ; X=-0.94 \times 20=-18.8 \Omega$
Version 5: $k=0.93 ; X=-0.93 \times 20=-18.6 \Omega$.

4\%

9. Determine $\boldsymbol{Z}_{\text {in }}$, assuming $R=10 \Omega$, and $\omega=$ 1 Mrad/s.

Solution: $M=k \sqrt{L \times L}=2 \mu \mathrm{H}$. It follows that the series branches of the T-equivalent circuit are zero and the shunt branch is $j \omega M=j 2 \Omega ;-\frac{j}{\omega C}=-j$. The parallel
 impedance of $j 2$ and $-j \Omega$ is $\frac{2}{j 2-j}=-j 2 \Omega . Z_{\text {in }}=R-j 2$
Ω.
Version 1: $R=10 \Omega ; Z_{\text {in }}=10-j 2 \Omega$
Version 2: $R=12 \Omega ; Z_{\text {in }}=12-j 2 \Omega$
Version 3: $R=15 \Omega ; Z_{\text {in }}=15-j 2 \Omega$
Version 4: $R=20 \Omega ; Z_{\text {in }}=20-j 2 \Omega$
Version 5: $R=22 \Omega ; Z_{\text {in }}=22-j 2 \Omega$.
10. Determine the input admittance $Y_{i n}$ assuming $Z_{L}=10 \angle 45^{\circ} \Omega$.

Solution: It follows from the circuit shown that $\mathbf{V}_{\mathbf{L}}=-2 \mathbf{V}_{\mathbf{1}}$, so that
$\frac{\mathbf{V}_{\mathbf{L}}}{\mathbf{V}_{1}}=-2$. Since the ideal autotransformer does not dissipate
power, and $\mathbf{V}_{\mathrm{L}}=-2 \mathbf{V}_{1}, \mathbf{V}_{\mathrm{L}} \times \mathbf{I}_{\mathrm{L}}=\mathbf{V}_{1} \times \mathbf{I}_{1}, \frac{\mathbf{I}_{\mathrm{L}}}{\mathbf{I}_{1}}=-\frac{1}{2}$. It follows that $Y_{i n}=\frac{\mathbf{I}_{1}}{\mathbf{V}_{1}}=\frac{4}{Z_{L}} \mathrm{~S}$.

Version 1: $Z_{L}=10 \angle 45^{\circ} \Omega ; Y_{\text {in }} \equiv \frac{4}{10 \angle 45^{\circ}}=0.4 \angle-45^{\circ} \mathrm{S}$
Version 2: $Z_{L}=10 \angle-45^{\circ} \Omega ; Y_{\text {in }} \equiv \frac{4}{10 \angle-45^{\circ}}=0.4 \angle 45^{\circ} \mathrm{S}$
Version 3: $Z_{L}=20 \angle 45^{\circ} \Omega ; Y_{\text {in }} \equiv \frac{4}{20 \angle 45^{\circ}}=0.2 \angle-45^{\circ} \mathrm{S}$
Version 4: $Z_{L}=20 \angle-45^{\circ} \Omega ; Y_{i n} \equiv \frac{4}{20 \angle-45^{\circ}}=0.2 \angle 45^{\circ} \mathrm{S}$

Version 5: $Z_{L}=40 \angle 45^{\circ} \Omega ; Y_{i n} \equiv \frac{4}{40 \angle 45^{\circ}}=0.1 \angle-45^{\circ} \mathrm{S}$.

20\%
11. Determine $Z_{T h}$ looking into terminals a and b .

Solution-Method 1: Apply a test voltage $\mathbf{V}_{\mathbf{T}}$, with the independent sources replaced by circuits. The secondary voltage is $\mathbf{V}_{\boldsymbol{T}}$ and the
primary voltage is $2 \mathbf{V}_{\mathbf{T}}$. The current through each capacitor is $\mathrm{V}_{\mathrm{T}} / 10$ as shown, so that the current in the short-circuit replacing the 2 V source is zero. For the ideal transformer, $\mathbf{I}_{\mathrm{T}}=j 2 \mathbf{V}_{\mathrm{T}} / 10$. It follows that $\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{T}}}=\frac{5}{j}=-j 5 \Omega$.

Method 2: Under open circuit conditions, the currents and voltages will be as shown. The voltages across the two capacitors are of equal magnitude but opposite polarity. It follows that $2 \mathrm{~V}_{\mathrm{Th}}=12 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{Th}}=6 \mathrm{~V}$.

Under open circuit conditions, the currents and voltages will be as shown. It follows that $I_{S C}=j 1.2 \mathrm{~A}$. Hence, $Z_{T h}=6 / j 1.2$ $=-j 5 \Omega$.

20\%

12. Determine the turns ratio a so that Norton's admittance looking into terminals 1 and 2 is zero, assuming $\omega=1$ Mrad/s.

Solution-Method 1: The impedances are: $j \omega 6=j 6 \Omega, j \omega 4=$ $j 4 \Omega, j \omega 3=j 3 \Omega$, and $1 / j \omega C=1 /\left(j 10^{6} \times 0.25 \times 10^{-6}\right)=-j 4 \Omega$.

When a test source $\mathbf{V}_{\mathbf{T}}$ is applied, the test current $\mathbf{I}_{\mathbf{T}}$ should be zero. The voltages and currents in the circuit will be as shown.

From KVL in the branch containing the coupled coils,
$\mathbf{V}_{\mathbf{T}}=j(6-3) \mathbf{I}+a \mathbf{V}_{\mathbf{T}}+j(4-3) \mathbf{I}=a \mathbf{V}_{\mathbf{T}}+j 4 \mathbf{I} \mathbf{V}$, or $\quad(1-a) \mathbf{V}_{T}=j 41$

From KCL at node 1, $\mathbf{a} \mathbf{l}=\mathbf{I}+\frac{\mathbf{V}_{\mathbf{T}}}{-j 4}$, or
$\frac{V_{T}}{j 4}=(1-a)$ I
Dividing Equation 1 by Equation 2:
$j 4(1-a)=\frac{j 4}{(1-a)},(a-1)^{2}=1 ; a=1 \pm 1$,
which gives $a=2$.

Method 2: The circuit can be redrawn as shown, where the two coupled coils in series have been replaced by the equivalent

inductance ($j 6+j 4$ -
$j 6)=j 4 \Omega$. This
inductance carries a
current $\frac{(1-a)}{j 4} \mathbf{V}_{\mathbf{T}}$
and can be replaced

by a current source of this value in accordance with the substitution theorem. This source can then be rearranged as two sources, as shown. From KCL,
$\frac{a(1-a)}{j 4} V_{T}=\frac{(1-a)}{j 4} V_{T}+\frac{V_{T}}{-j 4}, a-a^{2}=1-a-1$, which gives $a=0$ or 2 , so a must equal 2.

20\%
13. Determine V_{L}.

Solution-Method 1: Derive TEC at the primary terminals. $\mathrm{V}_{\mathrm{x}}=$ $0.1 \mathbf{V}_{\mathbf{x}}(5+j 5)$, which gives $\mathbf{V}_{\mathbf{x}}=0$
 and $\mathrm{V}_{\mathrm{TH}}=3 \mathrm{~V}$.

From KCL.

$$
\frac{3}{5+j 5}=0.3+\mathbf{I}_{\mathrm{SRC}}
$$ which gives, $\mathbf{I}_{\text {SRC }}=-$

$j 0.3 \mathrm{~A}$ and $\mathrm{Z}_{\mathrm{Th}}=$

$\frac{3}{-j 0.3}=j 10 \Omega$. TEC
becomes as shown. Reflecting this to the secondary, it follows from voltage division that
$\mathbf{V}_{\mathbf{L}}=-\frac{-j 10}{j 30} \times 6=2 \mathrm{~V}$.
Method 2: No reflections.
The primary voltage and current will be as shown in the figure. From KCL, the current in the $(5+j 5) \Omega$

impedance is $\left(0.1 \mathbf{V}_{\mathrm{x}}-2 \mathbf{I}_{\mathrm{L}}\right)$,
so that $\mathbf{V}_{\mathbf{x}}=\left(0.1 \mathbf{V}_{\mathbf{X}}-2 \mathbf{I}_{\mathbf{L}}\right)(5+j 5)$ and $\mathbf{I}_{\mathbf{L}}=\mathbf{V}_{\mathbf{L}} /(-j 10)=j 0.1 \mathbf{V}_{\mathbf{L}}$. Substituting for $\mathbf{I}_{\mathbf{L}}, \mathbf{V}_{\mathbf{X}}=\left(0.1 \mathbf{V}_{\mathbf{X}}-\right.$ $\left.j 0.2 \mathbf{V}_{\mathrm{L}}\right)(5+j 5)=0.5 \mathbf{V}_{\mathrm{x}}+j 0.5 \mathbf{V}_{\mathrm{x}}-j(1+j) \mathbf{V}_{\mathrm{L}}$, or, $0.5(1-j) \mathbf{V}_{\mathrm{X}}=(1-j) \mathbf{V}_{\mathrm{L}}$, which gives, $\mathbf{V}_{\mathrm{X}}=2 \mathbf{V}_{\mathrm{L}}$.
From $K V L$ on the primary side, $0.5 \mathbf{V}_{\mathbf{L}}+3-\mathbf{V}_{\mathbf{x}}=0$; substituting for $\mathbf{V}_{\mathbf{x}}, 1.5 \mathbf{V}_{\mathbf{L}}=3$ and $\mathbf{V}_{\mathbf{L}}=2$ V.

Method 3: The capacitive branch is reflected to the primary side together with \mathbf{V}_{L}. From KCL , the current through the $(5+j 5) \Omega$ impedance is $0.1 \mathbf{V}_{\mathbf{x}}-0.5 \mathrm{~V}_{\mathrm{L}}-j 2.5=0.1 \mathbf{V}_{\mathrm{x}}-j 0.2 \mathrm{~V}_{\mathrm{L}}$,

so that $\mathbf{V}_{\mathbf{x}}=\left(0.1 \mathbf{V}_{\mathbf{x}}-j 0.2 \mathbf{V}_{\mathrm{L}}\right)(5+j 5)=\left(0.5 \mathbf{V}_{\mathrm{x}}-j \mathbf{V}_{\mathrm{L}}\right)(1+j)=0.5 \mathbf{V}_{\mathrm{x}}+j 0.5 \mathbf{V}_{\mathrm{x}}-j \mathbf{V}_{\mathrm{L}}(1+j)$, or $0.5(1-j) \mathbf{V}_{\mathbf{x}}=(1-j) \mathbf{V}_{\mathbf{L}}$, which gives $\mathbf{V}_{\mathbf{x}}=2 \mathbf{V}_{\mathbf{L}}$. From KVL on the primary side, $0.5 \mathbf{V}_{\mathbf{L}}+3-\mathbf{V}_{\mathrm{x}}$ $=0$; substituting for $\mathbf{V}_{\mathbf{x}}, 1.5 \mathrm{~V}_{\mathrm{L}}=3$ and $\mathbf{V}_{\mathbf{L}}$
$=2 \mathrm{~V}$.
Method 4: The primary circuit is reflected to the secondary side. The $(5+j 5) \Omega$ is multiplied by 4 . The source voltage and $\mathrm{V}_{\mathrm{x}}^{\prime}$ are multiplied by 2 and reversed in
 sign. To maintain the same dependency relation, with the dependent source still on the primary side, k is divided by 2 and reversed in sign. When reflected to the secondary side, this current source must be divided by 2 . The overall effect is to divide k by 4 and reverse the sign of the current source as shown. It follows that $\mathbf{V}_{\mathrm{x}}^{\prime}=\left(0.025 \mathbf{V}_{\mathrm{x}}^{\prime}-\mathrm{I}_{\mathrm{L}}\right)(20+j 20)=$ $\left(0.5 \mathrm{~V}_{\mathrm{x}}^{\prime}-j 2 \mathrm{~V}_{\mathrm{L}}\right)(1+j)=0.5 \mathrm{~V}_{\mathrm{x}}^{\prime}+j 0.5 \mathrm{~V}_{\mathrm{x}}^{\prime}+2 \mathrm{~V}_{\mathrm{L}}(1-j)$, or, $0.5 \mathrm{~V}_{\mathrm{x}}^{\prime}(1-j)=2 \mathbf{V}_{\mathrm{L}}(1-j)$, which gives $\mathbf{V}_{\mathrm{x}}^{\prime}=4 \mathrm{~V}_{\mathrm{L}}$. From $\mathrm{KVL}, \mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{x}}^{\prime}+6=0$. Substituting for $\mathrm{V}_{\mathrm{x}}^{\prime}, \mathrm{V}_{\mathrm{L}}=2 \mathrm{~V}$.

