1. A current $i = I_m \cos(\omega t + 30^\circ)$ flows through an impedance $(5 - j5) \Omega$. Determine the rms phasor voltage across the impedance if $I_m = 2.5$ A.

Solution: The phasor current is $I_m \angle 30^\circ$ A. The impedance is $5\sqrt{2} \angle -45^\circ \Omega$. The phasor

voltage is $5I_m\sqrt{2} \angle -15^{\circ}$ V peak value or $5I_m \angle -15^{\circ}$ V rms.

Version 1: $I_m = 2.5 \text{ A}, \text{ V} = 12.5 \angle -15^{\circ} \text{ V} \text{ rms}$

Version 2: $I_m = 5 \text{ A}, \text{ V} = 25 \angle -15^{\circ} \text{ V} \text{ rms}$

Version 3: $I_m = 7.5 \text{ A}, \text{ V} = 37.5 \angle -15^{\circ} \text{ V} \text{ rms}$

Version 4: $I_m = 10 \text{ A}, \text{ V} = 50 \angle -15^{\circ} \text{ V} \text{ rms}$

Version 4: $I_m = 12.5 \text{ A}$, **V** = $62.5 \angle -15^{\circ} \text{ V}$ rms.

4%

- In the phasor diagram shown, phasor A is a current, the other phasors B, C, and D are voltages. To which of the following combinations of circuit elements does this phasor diagram apply?
 - A. R in series with L
 - B. R in series with C
 - C. R in parallel with C
 - D. L in series with C
 - E. L in parallel with C.

- 4%
- 3. Determine the input impedance Z_{in} assuming

$$R = 2 \Omega$$
.

Solution: If a test voltage source V_T is applied, I_T

$$= \left(\frac{1}{R+j2} - \frac{1}{R-j2}\right) \mathbf{V}_{\mathsf{T}}, \text{ or } Z_{in} =$$

$$\frac{1}{\left(\frac{1}{R+j2} - \frac{1}{R-j2}\right)} = \frac{(R+j2)(R-j2)}{R-j2-R-j2} = \frac{R^2+4}{-j4} = j\left(1 + \frac{R^2}{4}\right)\Omega.$$
 Alternatively, the dependent

source is equivalent to an impedance -(R - j2) and $Z_{in} = (R + j2) || [-(R - j2)] \Omega$.

Version 1: $R = 2 \Omega$; $Z_{in} = j2 \Omega$ Version 2: $R = 3 \Omega$; $Z_{in} = j3.25 \Omega$ Version 3: $R = 4 \Omega$; $Z_{in} = j5 \Omega$ Version 4: $R = 5 \Omega$; $Z_{in} = j7.25 \Omega$ Version 5: $R = 6 \Omega$; $Z_{in} = j10 \Omega$.

4%

4. Determine Z_Y so that V_L is in phase with V_{SRC} , assuming $X = -5 \Omega$ with R_L and V_{SRC} unknown.

Solution: TEC as seen from terminals a and b will have $Z_{Th} = jX/2$. For V_L to be in phase with V_{SRC}, $Z_Y = -jX/2$.

Version 1: $X = -5 \Omega$; $Z_Y = j2.5 \Omega$ Version 2: $X = 5 \Omega$; $Z_Y = -j2.5 \Omega$ Version 3: $X = -10 \Omega$; $Z_Y = j5 \Omega$

Version 4: $X = 10 \Omega; Z_Y = -j5 \Omega$

Version 5: $X = -15 \Omega$; $Z_Y = j7.5 \Omega$.

 Two coils are wound on a core of high permeability. Coil 1 has 100 turns and coil 2 has 400 turns. A current of 1 A in coil 1, with coil 2 open circuited, produces a core flux of 0.5 mWb. Determine the magnitude of the core flux produced by a current of 0.8 A in coil 2, with coil 1 open circuited.

Solution: From the definition of mutual inductance, $\frac{N_2\phi_{21}}{i_1} = \frac{N_1\phi_{12}}{i_2}$, so that $\phi_{12} = \frac{i_2}{i_1}\frac{N_2}{N_1}\phi_{21} = \frac{i_2}{i_1}\frac{N_2}{N_1}\phi_{21}$

 $\frac{0.8}{1} \frac{400}{100} \phi_{21} = 3.2 \phi_{21}.$

Version 1: $\phi_{21} = 0.5 \text{ mWb}$; $\phi_{12} = 3.2 \times 0.5 = 1.6 \text{ mWb}$ **Version 2:** $\phi_{21} = 0.6 \text{ mWb}$; $\phi_{12} = 3.2 \times 0.6 = 1.92 \text{ mWb}$ **Version 3:** $\phi_{21} = 0.7 \text{ mWb}$; $\phi_{12} = 3.2 \times 0.7 = 2.24 \text{ mWb}$ **Version 4:** $\phi_{21} = 0.8 \text{ mWb}$; $\phi_{12} = 3.2 \times 0.8 = 2.56 \text{ mWb}$ **Version 5:** $\phi_{21} = 0.9 \text{ mWb}$; $\phi_{12} = 3.2 \times 0.9 = 2.88 \text{ mWb}$.

4%

7. Determine the stored **magnetic energy** under dc conditions, assuming $V_{SRC} = 1$ V.

Solution: The branch containing the capacitor carries no current under dc conditions. The current in the other two branches is $V_{SRC}/0.5$ A and the stored magnetic energy is W =

$$\frac{1}{2} \left(L_1 l^2 + L_1 l^2 + 2M l^2 \right) =$$

$$\frac{1}{2} \left(\frac{V_{SRC}}{0.5} \right)^2 (2 + 3 + 2 \times 1) = 14 V_{SRC}^2.$$

Version 1: $V_{SRC} = 1$ V; $W = 6 \times 1 = 14$ J Version 2: $V_{SRC} = 1.5$ V; $W = 6 \times 2.25 = 31.5$ J Version 3: $V_{SRC} = 2$ V; $W = 6 \times 4 = 56$ J Version 4: $V_{SRC} = 2.5$ V; $W = 6 \times 6.25 = 87.5$ J Version 5: $V_{SRC} = 3$ V; $W = 6 \times 9 = 126$ J.

8. Given $v_{SRC} = 6\cos\omega t$, where ω is unknown and k = 0.97. Determine X so that no power is dissipated in the circuit.

Solution: Considering mesh currents I_1 and I_2 , then for no power dissipation, $I_2 = 0$. The meshcurrent equation for mesh 2 is:

 $-(j\omega M + jX)\mathbf{I}_1 + (j40 + jX + 10)\mathbf{I}_2 = 0$

For I_2 to be zero, $\omega M + X = 0$, or $X = -\omega M =$ $-\omega k \sqrt{L_1 L_2} = -k \sqrt{(\omega L_1)(\omega L_2)} = -k \sqrt{400} = -20k$.

Alternatively, it follows from the T-equivalent circuit that if $X = -\omega M$ the shunt branch will have zero impedance so $I_2 = 0$.

Version 1: k = 0.97; $X = -0.97 \times 20 = -19.4 \Omega$ Version 2: k = 0.96; $X = -0.96 \times 20 = -19.2 \Omega$ Version 3: k = 0.95; $X = -0.95 \times 20 = -19 \Omega$ Version 4: k = 0.94; $X = -0.94 \times 20 = -18.8 \Omega$ Version 5: k = 0.93; $X = -0.93 \times 20 = -18.6 \Omega$.

4%

9. Determine Z_{in} , assuming $R = 10 \Omega$, and $\omega = 1$ Mrad/s.

Solution: $M = k\sqrt{L \times L} = 2 \,\mu$ H. It follows that the series branches of the T-equivalent circuit are zero and the shunt branch is $j\omega M = j2 \,\Omega$; $-\frac{j}{\omega C} = -j$. The parallel impedance of j2 and $-j \,\Omega$ is $\frac{2}{j2-j} = -j2 \,\Omega$. $Z_{in} = R - j2$

Ω.

Version 1: $R = 10 \Omega$; $Z_{in} = 10 - j2 \Omega$ Version 2: $R = 12 \Omega$; $Z_{in} = 12 - j2 \Omega$ Version 3: $R = 15 \Omega$; $Z_{in} = 15 - j2 \Omega$ Version 4: $R = 20 \Omega$; $Z_{in} = 20 - j2 \Omega$ Version 5: $R = 22 \Omega$; $Z_{in} = 22 - j2 \Omega$.

10. Determine the input admittance Y_{in} assuming $Z_L = 10 \angle 45^\circ \Omega$. **Solution:** It follows from the circuit shown that $\mathbf{V}_L = -2\mathbf{V}_1$, so that $\frac{\mathbf{V}_L}{\mathbf{V}_1} = -2$. Since the ideal autotransformer does not dissipate

 Y_{in}

ľ

 Z_L

٧L

3000 turns

> 1000 turns

power, and
$$V_L = -2V_1$$
, $V_L \times I_L = V_1 \times I_1$, $\frac{I_L}{I_1} = -\frac{1}{2}$. It follows that

$$Y_{in} = \frac{I_1}{V_1} = \frac{4}{Z_L}S.$$

Version 1: $Z_L = 10 \angle 45^\circ \Omega$; $Y_{in} = \frac{4}{10 \angle 45^\circ} = 0.4 \angle -45^\circ S$ Version 2: $Z_L = 10 \angle -45^\circ \Omega$; $Y_{in} = \frac{4}{10 \angle -45^\circ} = 0.4 \angle 45^\circ S$ Version 3: $Z_L = 20 \angle 45^\circ \Omega$; $Y_{in} = \frac{4}{20 \angle 45^\circ} = 0.2 \angle -45^\circ S$ Version 4: $Z_L = 20 \angle -45^\circ \Omega$; $Y_{in} = \frac{4}{20 \angle -45^\circ} = 0.2 \angle 45^\circ S$

Version 5:
$$Z_L = 40 \angle 45^{\circ} \Omega$$
; $Y_{in} \equiv \frac{4}{40 \angle 45^{\circ}} = 0.1 \angle -45^{\circ} S$.

20%

11. Determine Z_{Th} looking into terminals a and b. Solution-Method 1: Apply a test voltage V_T , with the independent sources replaced by circuits. The secondary voltage is V_T and the

primary voltage is $2V_T$. The current through each capacitor is $jV_T/10$ as shown, so that the current in the short-circuit replacing the 2 V source is zero. For the ideal transformer, $I_T = j2V_T/10$. It follows that

$$\frac{\mathbf{V}_{\mathsf{T}}}{\mathbf{I}_{\mathsf{T}}} = \frac{5}{j} = -j5\,\Omega.$$

Method 2: Under open circuit conditions, the currents and voltages will be as shown. The voltages across the two capacitors are of equal magnitude but opposite polarity. It follows that $2V_{Th} = 12$ V, and $V_{Th} = 6$ V.

Under open circuit conditions, the currents and voltages will be as shown. It follows that $I_{SC} = j1.2$ A. Hence, $Z_{Th} = 6/j1.2$ = $-j5 \Omega$.

20%

12. Determine the turns ratio *a* so that Norton's admittance looking into terminals 1 and 2 is zero, assuming $\omega = 1$ Mrad/s.

Solution-*Method 1:* The impedances are: $j\omega 6 = j6 \Omega$, $j\omega 4 = j4 \Omega$, $j\omega 3 = j3 \Omega$, and $1/j\omega C = 1/(j10^6 \times 0.25 \times 10^{-6}) = -j4 \Omega$.

When a test source V_{T} is applied, the test current I_{T} should be zero. The voltages and currents in the circuit will be as shown.

From KVL in the branch containing the coupled coils,

 $\mathbf{V}_{\mathsf{T}} = j(6-3)\mathbf{I} + a\mathbf{V}_{\mathsf{T}} + j(4-3)\mathbf{I} = a\mathbf{V}_{\mathsf{T}} + j4\mathbf{I} \vee,$ or $(1-a)\mathbf{V}_{\mathsf{T}} = j4\mathbf{I}$ (1) From KCL at node 1, $a\mathbf{I} = \mathbf{I} + \frac{\mathbf{V}_{\mathsf{T}}}{-j4}$, or $\frac{\mathbf{V}_{\mathsf{T}}}{j4} = (1-a)\mathbf{I}$ (2)

Dividing Equation 1 by Equation 2:

$$j4(1-a) = \frac{j4}{(1-a)}$$
, $(a-1)^2 = 1$; $a = 1 \pm 1$,

which gives a = 2.

Method 2: The circuit can be redrawn as shown, where the two coupled coils in series have been replaced by the equivalent inductance (j6 + j4 - j6) = $j4 \Omega$. This

and can be replaced

by a current source of this value in accordance with the substitution theorem. This source can then be rearranged as two sources, as shown. From KCL,

 $I_{T} = 0$

-*j*4

 $I_T = 0$

-*i*4

VT

(1−a)**V**_T

j4

1:a

 $\frac{(1-a)\mathbf{V}}{j4}$

aVT

 $a(1-a)\mathbf{V}_{T}$

j4

 $I_{T} = 0$

-*j*4

(1 - a)

(1*–* a)**V**

j4

i4

1:a

аVт

$$\frac{a(1-a)}{j4}\mathbf{V}_{T} = \frac{(1-a)}{j4}\mathbf{V}_{T} + \frac{\mathbf{V}_{T}}{-j4}, a-a^{2} = 1-a-1, \text{ which gives } a = 0 \text{ or } 2, \text{ so } a \text{ must equal } 2.$$

becomes as shown. Reflecting this to the secondary, it follows from voltage division that

$$\mathbf{V}_{\mathbf{L}} = -\frac{-j10}{j30} \times 6 = 2 \text{ V}.$$

Method 2: No reflections. The primary voltage and current will be as shown in the figure. From KCL, the current in the $(5 + j5) \Omega$ impedance is $(0.1 V_x - 2 I_L)$,

so that $V_x = (0.1V_x - 2I_L)(5 + j5)$ and $I_L = V_L/(-j10) = j0.1V_L$. Substituting for I_L , $V_x = (0.1V_x - 2I_L)(5 + j5)$ $j(0.2V_L)(5 + j5) = 0.5V_X + j(0.5V_X - j(1 + j)V_L$, or, $0.5(1 - j)V_X = (1 - j)V_L$, which gives, $V_X = 2V_L$. From KVL on the primary side, $0.5V_L + 3 - V_X = 0$; substituting for V_X , $1.5V_L = 3$ and $V_L = 2$ V.

Method 3: The capacitive branch is reflected to the primary side together with V_L . From KCL, the current through the $(5 + i5) \Omega$ impedance is $0.1V_{x} - 0.5V_{L} / - j2.5 = 0.1V_{x} - j0.2V_{L}$ so that $V_x = (0.1V_x - j0.2V_L)(5 + j5) = (0.5V_x - jV_L)(1 + j) = 0.5V_x + j0.5V_x - jV_L(1 + j)$, or $0.5(1 - j)V_x = (1 - j)V_L$, which gives $V_x = 2V_L$. From KVL on the primary side, $0.5V_L + 3 - V_x$ = 0; substituting for V_X , 1.5 V_L = 3 and V_L

= 2 V.

Method 4: The primary circuit is reflected to the secondary side. The $(5 + i5) \Omega$ is multiplied by 4. The source voltage and V'_x are multiplied by 2 and reversed in

sign. To maintain the same dependency relation, with the dependent source still on the primary side, k is divided by 2 and reversed in sign. When reflected to the secondary side, this current source must be divided by 2. The overall effect is to divide k by 4 and reverse the sign of the current source as shown. It follows that $V'_x = (0.025 V'_x - I_L)(20 + j20) =$ $(0.5 V'_x - j2V_L)(1 + j) = 0.5 V'_x + j0.5 V'_x + 2V_L(1 - j)$, or, $0.5 V'_x (1 - j) = 2V_L(1 - j)$, which gives $V'_{x} = 4V_{L}$. From KVL, $V_{L} - V'_{x} + 6 = 0$. Substituting for V'_{x} , $V_{L} = 2$ V.