Prof. R. Chedid

FACULTY OF ENGINEERING & ARCHITECTURE

SPRING TERM 2005-06

Name: March 22, 2006
ID: Major: March 22, 2006

(EECE 210) ELECTRIC CIRCUITS & ELECTRONICS

CLOSED BOOK (1 1/4 HRS)

Programmable Calculators are not allowed
Provide your answers on the computer's card only
Return the computer's card attached to the question sheet
Mark with a pencil your name and your ID-No
Use pencil for marking your answers
When using eraser, be sure that you have erased well

!!! PENALTY IS 6 TO 1 !!!

1. Determine R_{in} in the figure.

- a) Infinite
- b) Zero Ω
- c) $1 k\Omega$
- d) $2 k\Omega$
- e) None of the above

2. Considering the circuit below, find the current Io flowing through the resistor 300Ω .

- a) 0.667 A
- b) 1.000 A
- c) 1.333 A
- d) 2.000 A
- e) None of the above

3. Find the equivalent resistance R_{ab} in the circuit below. Each resistor is $100\;\Omega$

- b) ~250 Ω
- c) ~412.5 Ω
- d) ~275 Ω
- e) None of the above

- 4. Determine Vo in the figure, assuming an ideal op amp.
 - a) 15V
 - b) 5 V c) 6 V

 - d) g V
 - e) None of the above

5. In the circuit below R is a variable resistor. For what value of R the maximum power is transferred to it.

- a) 50Ω
- b) 100Ω
- c) 150Ω
- d) 250Ω
- e) None of the above
- 6. Find *i* in the circuit below.

- a) 6.4 A
- b) 4.8 A
- c) 2.5 A
- d) 7.3 A
- e) None of the above

7. A load resistance R in the range of [1,8] Ω is to be connected across the terminals a,b in such a way that maximum power is delivered to it. Determine the power dissipated by R.

- a) 10.58 W
- b) 4.17 W
- c) 5.95 W
- d) 8.26 W
- e) None of the above
- 8. Find the equivalent resistance between the terminals (a,b).

- a) 4.50 Ω
- b) 2.25 Ω
- c) 12.5 Ω
- d) 8.0 Ω
- e) None of the above

9. Calculate the voltage $\ Vo \ across \ the \ 6 \ \Omega$ resistor due to the 36 V source only.

- a) 15 V
- b) 12 V
- c) 18V
- d) 3 V
- e) None of the above

10. For the circuit shown, find the Thevenin voltage seen by terminals b-d.

- a) 1V
- b) 1.5V
- c) 2V
- d) 2.5V
- e) None of the above
- 11. In problem 10, find the Thevenin resistance seen by terminals b-d:
 - a) 2Ω
 - b) 3Ω
 - c) 4Ω
 - d) 5Ω
 - e) None of the above
- 12. For the circuit shown, find the Thevenin resistance seen by terminals a-b.

- a) ~0.62Ω
- b) $\sim 1.6\Omega$
- c) ~1.1Ω
- d) ~0.93Ω
- e) None of the above

- 13. In problem 12, find the Thevenin voltage seen by terminals b-d.

 - a) 10 V b) 20 V
 - c) 30V

 - d) 40 V e) None of the above