AMERICAN UNIVERSITY OF BEIRUT Department of Electrical and Computer Engineering EECE210 Fall 2004

Quiz 2, December 15, 2004

Prof Karameh

Directions:

- NO PROGRAMMABLE CALCULATORS ARE ALLOWED.
- You will have 1.5 hrs for this quiz.
- Write down your initials in ink on all the pages. DO IT NOW!
- Answers must be explained or derived. DO NOT just write down an answer.
- It is a good idea to read the whole test before you begin. Some problems are divided into several parts with percentages indicated. You might be able to solve different parts independently.
- DO NOT talk to any of your colleagues under any circumstances. You will be penalized without warning.

YOUR NAME HERE:

PROBLEM 1 (15%)

Consider the network shown in figure 1. The Switch was at the 20 Ω for a long time for t < 0. At t=0, switch is moved to the 10 Ω resistor.

- (a) (12 %) Find the current in the inductor $i_L(t), t \ge 0$.
- (b) (3%) Find the maximum energy stored in the inductor.

Figure 1: Problem 1

PROBLEM 2 (12%)

Consider the network shown in figure 2. Find the values of resistors R_1 , R_3 so that the current supplied by the voltage source V_s is zero for all time. All op-amps are ideal.

Figure 2: Problem 2

NAME:

PROBLEM 3 (18%)

Consider the network shown in figure 3.

- (a) (4%) Write the differential equations necessary to compute the voltage in the resistor R for any source voltage v(t).
- (b) (4%) If $v(t) = 12 201e^{-t}$, which, *if any*, of the following currents might actually have came from the circuit?
 - (1) $i_1(t) = 0.24 2e^{-t}, i_2(t) = 4e^{-t}.$
 - (2) $i_1(t) = 0.12 4e^{-t}, i_2(t) = 3e^{-t}.$
 - (3) $i_1(t) = 0.24 4e^{-t}, i_2(t) = 3e^{-t}.$
- (c) (10%) Find the Thevenin equivalent circuit for the network to the left of terminals a,b of the resistor. ($v(t) = 100\cos 100t$ volts).

Figure 3: Problem 3

Problem 4 (15%)

Find the output voltages v_1 and v_2 of the ideal op-amps shown in figure 4.

Figure 4: Problem 4

PROBLEM 5 (20%)

For the network shown in figure 5, find the current $i_2(t)$. Show all your work.

Figure 5: Problem 5

PROBLEM 6 (20%)

Consider the circuit shown in figure 6 below. The switch was open for a very long time t < 0. At t=0, switch is closed.

- (a) (12 %) Given: L=5 H, C=4 F, R₁ = 3 Ω , and $R_2 = 2\Omega$. Find the voltage in the capacitor $v_c(t)$ for $t \ge 0$.
- (b) (3 %) Is the circuit response you obtained in part (a) underdamped, critically damped, or overdamped? explain.
- (c) (5%) If L= 5 H, C=4 F, find R_1 , R_2 such that the circuit response is *critically damped*.

Figure 6: Problem 6