Quiz 2, December 15, 2004
Prof Karameh

Directions:

- NO PROGRAMMABLE CALCULATORS ARE ALLOWED.
- You will have 1.5 hrs for this quiz.
- Write down your initials in ink on all the pages. DO IT NOW!
- Answers must be explained or derived. DO NOT just write down an answer.
- It is a good idea to read the whole test before you begin. Some problems are divided into several parts with percentages indicated. You might be able to solve different parts independently.
- DO NOT talk to any of your colleagues under any circumstances. You will be penalized without warning.

YOUR NAME HERE:

PROBLEM 1 (15\%)

Consider the network shown in figure 1. The Switch was at the 20Ω for a long time for $t<0$. At $\mathrm{t}=0$, switch is moved to the 10Ω resistor.
(a) (12%) Find the current in the inductor $i_{L}(t), t \geq 0$.
(b) (3\%) Find the maximum energy stored in the inductor.

Figure 1: Problem 1

PROBLEM 2 (12\%)

Consider the network shown in figure 2. Find the values of resistors R_{1}, R_{3} so that the current supplied by the voltage source V_{s} is zero for all time. All op-amps are ideal.

Figure 2: Problem 2

PROBLEM 3 (18\%)

Consider the network shown in figure 3.
(a) (4%) Write the differential equations necessary to compute the voltage in the resistor R for any source voltage $v(t)$.
(b) (4%) If $v(t)=12-201 e^{-t}$, which, if any, of the following currents might actually have came from the circuit?
(1) $i_{1}(t)=0.24-2 e^{-t}, i_{2}(t)=4 e^{-t}$.
(2) $i_{1}(t)=0.12-4 e^{-t}, i_{2}(t)=3 e^{-t}$.
(3) $i_{1}(t)=0.24-4 e^{-t}, i_{2}(t)=3 e^{-t}$.
(c) (10%) Find the Thevenin equivalent circuit for the network to the left of terminals a, b of the resistor. $(v(t)=100 \cos 100 t$ volts $)$.

Figure 3: Problem 3

Problem 4 (15\%)
Find the output voltages v_{1} and v_{2} of the ideal op-amps shown in figure 4 .

Figure 4: Problem 4
PROBLEM 5 (20\%)
For the network shown in figure 5 , find the current $i_{2}(t)$. Show all your work.

Figure 5: Problem 5

PROBLEM 6 (20\%)
Consider the circuit shown in figure 6 below. The switch was open for a very long time $t<0$. At $\mathrm{t}=0$, switch is closed.
(a) (12 \%) Given: $\mathrm{L}=5 \mathrm{H}, \mathrm{C}=4 \mathrm{~F}, \mathrm{R}_{1}=3 \Omega$, and $R_{2}=2 \Omega$. Find the voltage in the capacitor $v_{c}(t)$ for $t \geq 0$.
(b) (3 \%) Is the circuit response you obtained in part (a) underdamped, critically damped, or overdamped? explain.
(c) (5%) If $\mathrm{L}=5 \mathrm{H}, \mathrm{C}=4 \mathrm{~F}$, find R_{1}, R_{2} such that the circuit response is critically damped.

Figure 6: Problem 6

