AUB Physics Department	Phys 210 Final exam	Jan. 23, 2006 Time:100 min
Name :		
ID. NO :		

Major	:

INFO:

- •No make up of this exam
- All questions are obligatory. Only one answer can be crossed in case of multiple questions. Your answer must be identified uniquely.

Page	Grade		
3)		/ 22	4 questions
4)		/ 21	4 question
5)		/ 35	7 questions
6)		/ 12	Problem 1
7)		/ 10	problem2

Total:

 (5 points) Five moles of an ideal gas undergo free expansion from an initial volume of 20 cm³ to a final volume of 100 cm³. The change in entropy ∆S of this gas (in J / K) is:

a) 191	<i>b</i>) 52	<i>c</i>) 67
<i>d</i>) 67	e) 71	

- ♥ (5 points) Three engines operates between reservoirs separated by 300 K. Engine A operates between 1000 K and 700 K. Engine B operates between 800 K and 500 K. Engine C operates between 600 K and 300 K.
 - a) All these engines have the same efficiency , because the temperature difference is the same
 - b) Engine A has the highest efficiency
 - c) Engine C has the highest efficiency
 - d) Engine B has the highest efficiency
- ♥ (6 points)
 - 1) Which of the following is true for the entropy change (△S) of a system that undergoes a reversible adiabatic process?

a) ∆ S < 0	b) ∆ S> 0	c) ∆ S =0	
•.) = • •	• / = • •	•/=••	

2) What is the answer if the process is adiabatic but irreversible?

a)
$$\triangle$$
 S < 0 b) \triangle S> 0 c) \triangle S = 0

♥ (6 points) Heat is added to 0.25 Kg of a solid substance

of yet unknown specific heat (C_S) at a steady (constant rate of **50 J/S** (Joules/second). The temperature T of the substance which is initially solid is shown in the adjacent Figure as a function of time

1) (3 points) The specific heat of this solid is **(in J/(Kg .K):**

a) 130	b) 750	4
c) 2700	d) 4000	

2) (3 points)The latent heat of fusion is (in J/Kg):

a) 3.35 x10 ²	b) 6 x10 ⁴
c) 4 x10 ⁴	d) 200

Score: 22

 ♥ (4 points) A Carnot cycle operating as heat engine is shown in the adjacent Figure. It can be represented on a T-S diagram (T=Temperature, S=Entropy).

 (6 points) An amount of 5.0 Kg of water at T=288 K is mixed with 3.0 Kg of water at T=348 K in an insulated container. What is the change of entropy (△S) of the system in (J /K)?

a) 1.05 x 10⁵ b) 138 c) 142 d) 3000

e) none of the above, my answer is:_____

 (5 points) In a Carnot cycle, the entropy change is 2.57 (J/K) for the reversible isothermal expansion at T_h =500 K. What is the change in entropy for the reversible isothermal compression at T_c =300 K?

a) +2.57 J/K b) 0.0 J/K c) -2.57 J/K d) 1.54 J/K e) +1.54 J/K

Score: 21

- (4 points) You see two helium balloons floating close to each other (distance between them is about 2.0 cm). The balloons are fixed by strings to a table. You blow through the small apace between the balloons. What will happen to them?
 - a) They move away from each other b) They are not affected at all
 - c) They move toward each other
- (5 points) A beam of unpolarized light in air is incident at an angle of 58.6°
 (with respect to the normal) on a plane glass surface of unknown refraction index. The reflected beam is completely polarized. The refraction index of the glass is:
 - a) 1.60 b) 1.64 c) 1.33 d) 1.50
- ♥ (4 points) Suppose a Michelson interferometer is adjusted

such that the monochromatic light beam produces a maximum in intensity at the detector. If the movable mirror is moved a distance ΔL and during this motion the intensity decreases to minimum. What is the wavelength of the light?

- a) $\Delta L/4$ b) $\Delta L/2$ c) ΔL d) $2 \Delta L$ e) $4 \Delta L$
- (5 points) Monochromatic light from a He-Ne laser (λ= 632.8 nm) is incident on a diffraction grating containing 5000 lines/cm. The angle of the first-order maximum is:

a) 18.4° b) 39.2° c) 14.6° d) 27.7° e) 13.9°

- (5 points) A length of organ pipe is closed at one end. If the speed of sound is 344 m /s. What length of pipe (in cm) is needed to obtain a fundamental frequency of 50 Hz?
 - a) 1.72 b) 86 c) 344 d) 172 e) 688
- (6 points) A string is stretched and fixed at both ends, 200 cm apart. If the density of the string is 0.015 g/cm, and its tension is 600 N, what is the wavelength (in cm) of the fundamental harmonic?
 - a) 600 b) 400 c) 800 d) 200
- (6 points) A thin film of a refraction index n_f =1.29 is to be placed on a glass plate of n=1.50. The minimum thickness for the film such that the reflection of normally incident light with λ=600 nm is minimized is (1 nm= 1 nanometer=10⁻⁹ m):

a) 232 nm	b)58 nm	c) 116 nm	d) 465

Score: 35

P1) (12 points)

A substance is taken through the Cycle shown in Figure.

3 P₀

С

 Q_{AB} = heat absorbed by the system from $A \rightarrow B$, Q_{BC} = heat absorbed by the system from $B \rightarrow C$

a) (4 points) What is the work done on the gas during the cycle?

b) (4 points) If the internal energy in the state B is $(E_{int})_B$ =200 J, what is the $(E_{int})_C$?

c) (4 points) What is the amount of heat used during the process $C \rightarrow A$. Is this heat absorbed or rejected by the system?

P2) (10 points)

In the Figure, air moves the horizontal tube. At point A the air speed is $v_A = 2.0 \text{ m/s}$ and the radius is of the tube is $r_A = 0.05 \text{ m}$. At point B the radius is $r_B = 0.02 \text{ m}$. The small tube contains some water. The density of the air is $\rho_a = 1.29 \text{ Kg/m}^3$. Take gravitational acceleration g=10 m/s²

a) Calculate the speed at point B, v_B .

b) Find the height h indicated in the Figure between the water level in the small tube