Final solution, Summer 2010

Exercise

Lori just bought a new set of 4 tires for her car. The life of each tire is normally distributed with a mean of 45000 miles and a standard deviation of 3200 miles. Find the probability that all 4 tires will last at least 46000 miles. Assume the life of each of these tires is independent of the lives of other tires.

Final solution, Summer 2010

Exercise

Lori just bought a new set of 4 tires for her car. The life of each tire is normally distributed with a mean of 45000 miles and a standard deviation of 3200 miles. Find the probability that all 4 tires will last at least 46000 miles. Assume the life of each of these tires is independent of the lives of other tires.

Solution

The probability that one tire lives more than 46000 miles is 0.377, and the probability that all 4 tires live more than 46000 each is $(0.377)^4 = 0.02$.

Suppose that in a community the distributions of heights of men and women (in centimeters) are $\mathcal{N}(173, 40)$ and $\mathcal{N}(160, 20)$, respectively. Calculate the probability that the average height of 10 randomly selected men is at least 5 centimeters larger than the average height of six randomly selected women.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Suppose that in a community the distributions of heights of men and women (in centimeters) are $\mathcal{N}(173, 40)$ and $\mathcal{N}(160, 20)$, respectively. Calculate the probability that the average height of 10 randomly selected men is at least 5 centimeters larger than the average height of six randomly selected women.

Solution

Let X_1, \ldots, X_{10} be the heights of the ten men, and Y_1, \ldots, Y_6 be the heights of the six women.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Suppose that in a community the distributions of heights of men and women (in centimeters) are $\mathcal{N}(173, 40)$ and $\mathcal{N}(160, 20)$, respectively. Calculate the probability that the average height of 10 randomly selected men is at least 5 centimeters larger than the average height of six randomly selected women.

Solution

Let X_1, \ldots, X_{10} be the heights of the ten men, and Y_1, \ldots, Y_6 be the heights of the six women.

we want to find $P(\overline{X} - \overline{Y} > 5)$

Suppose that in a community the distributions of heights of men and women (in centimeters) are $\mathcal{N}(173, 40)$ and $\mathcal{N}(160, 20)$, respectively. Calculate the probability that the average height of 10 randomly selected men is at least 5 centimeters larger than the average height of six randomly selected women.

Solution

Let X_1, \ldots, X_{10} be the heights of the ten men, and Y_1, \ldots, Y_6 be the heights of the six women.

we want to find $P(\overline{X} - \overline{Y} > 5)$

 \overline{X} has a normal distribution with mean 173 and variance 4 and \overline{Y} has a normal distribution with mean 160 and variance 10/3, and then $\overline{X} - \overline{Y}$ has a normal distribution with mean 13 and variance 22/3

(ロ)、

Suppose that in a community the distributions of heights of men and women (in centimeters) are $\mathcal{N}(173, 40)$ and $\mathcal{N}(160, 20)$, respectively. Calculate the probability that the average height of 10 randomly selected men is at least 5 centimeters larger than the average height of six randomly selected women.

Solution

Let X_1, \ldots, X_{10} be the heights of the ten men, and Y_1, \ldots, Y_6 be the heights of the six women.

we want to find $P(\overline{X} - \overline{Y} > 5)$

 \overline{X} has a normal distribution with mean 173 and variance 4 and \overline{Y} has a normal distribution with mean 160 and variance 10/3, and then $\overline{X} - \overline{Y}$ has a normal distribution with mean 13 and variance 22/3

 $P(\overline{X} - \overline{Y} > 5) = 0.86$ (from the standard normal table)

Otto is trying out for the javelin throw to compete in the olympics. The lengths of his javelin throws is normally distributed with a mean of 290 feet and a standard deviation of 10 feet. Find the probability that the longest of three of his throws is 320 feet or more.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Otto is trying out for the javelin throw to compete in the olympics. The lengths of his javelin throws is normally distributed with a mean of 290 feet and a standard deviation of 10 feet. Find the probability that the longest of three of his throws is 320 feet or more.

ション ふゆ く 山 マ チャット しょうくしゃ

Solution

Let X_1, X_2, X_3 be the lengths of his three throws.

Otto is trying out for the javelin throw to compete in the olympics. The lengths of his javelin throws is normally distributed with a mean of 290 feet and a standard deviation of 10 feet. Find the probability that the longest of three of his throws is 320 feet or more.

ション ふゆ く 山 マ チャット しょうくしゃ

Solution

Let X_1, X_2, X_3 be the lengths of his three throws. $P(\max(X_1, X_2, X_3) > 320) = 1 - (P(X_1 < 320))^3$

Otto is trying out for the javelin throw to compete in the olympics. The lengths of his javelin throws is normally distributed with a mean of 290 feet and a standard deviation of 10 feet. Find the probability that the longest of three of his throws is 320 feet or more.

Solution

Let X_1, X_2, X_3 be the lengths of his three throws. $P(\max(X_1, X_2, X_3) > 320) = 1 - (P(X_1 < 320))^3$ $= 1 - (P(Z < 3))^3 = 1 - (0.998)^3 = 0.004$.

he time it takes for a student to finish an aptitude test (in hours) has the pdf

$$f(x) = 6(x-1)(2-x)$$
, $1 < x < 2$

Approximate the probability that the average length of time it takes for a random sample of 15 students to complete the test is less than 1 hour and 25 minutes.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

he time it takes for a student to finish an aptitude test (in hours) has the pdf

$$f(x) = 6(x-1)(2-x)$$
, $1 < x < 2$

Approximate the probability that the average length of time it takes for a random sample of 15 students to complete the test is less than 1 hour and 25 minutes.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Solution

Let X_1, \ldots, X_{15} be the exam time of the 15 students.

he time it takes for a student to finish an aptitude test (in hours) has the pdf

$$f(x) = 6(x-1)(2-x)$$
, $1 < x < 2$

Approximate the probability that the average length of time it takes for a random sample of 15 students to complete the test is less than 1 hour and 25 minutes.

Solution

Let X_1, \ldots, X_{15} be the exam time of the 15 students. we want to find $P(\overline{X} < 1.42)$ (time in hours!!)

he time it takes for a student to finish an aptitude test (in hours) has the pdf

$$f(x) = 6(x-1)(2-x)$$
, $1 < x < 2$

Approximate the probability that the average length of time it takes for a random sample of 15 students to complete the test is less than 1 hour and 25 minutes.

Solution

Let X_1, \ldots, X_{15} be the exam time of the 15 students. we want to find $P(\overline{X} < 1.42)$ (time in hours!!) $E(X_1) = 3/2$ and $Var(X_1) = 1/20$

he time it takes for a student to finish an aptitude test (in hours) has the pdf

$$f(x) = 6(x-1)(2-x)$$
, $1 < x < 2$

Approximate the probability that the average length of time it takes for a random sample of 15 students to complete the test is less than 1 hour and 25 minutes.

Solution

Let X_1, \ldots, X_{15} be the exam time of the 15 students. we want to find $P(\overline{X} < 1.42)$ (time in hours!!) $E(X_1) = 3/2$ and $Var(X_1) = 1/20$ by the central limit theorem, $\frac{\overline{X} - 3/2}{1/\sqrt{300}}$ has an approximate standard normal distribution

he time it takes for a student to finish an aptitude test (in hours) has the pdf

$$f(x) = 6(x-1)(2-x)$$
, $1 < x < 2$

Approximate the probability that the average length of time it takes for a random sample of 15 students to complete the test is less than 1 hour and 25 minutes.

Solution

Let X_1, \ldots, X_{15} be the exam time of the 15 students. we want to find $P(\overline{X} < 1.42)$ (time in hours!!) $E(X_1) = 3/2$ and $Var(X_1) = 1/20$ by the central limit theorem, $\frac{\overline{X} - 3/2}{1/\sqrt{300}}$ has an approximate standard normal distribution

$$P(\overline{X} < 1.42) \simeq P(Z < -1.38) = 0.083$$