American University of Beirut STAT 230

Introduction to Probability and Random Variables
Summer 2010

Final Exam

1. Let X and Y be a couple of random variables with joint pdf

$$
f(x, y)=c, 0<x<1, x^{2}<y<1
$$

Find the value of the constant c.
2. Refer to question 1 , find $E(X)$.
3. Lori just bought a new set of 4 tires for her car. The life of each tire is normally distributed with a mean of 45000 miles and a standard deviation of 3200 miles. Find the probability that all 4 tires will last at least 46000 miles. Assume the life of each of these tires is independent of the lives of other tires.
4. A television store owner figures that 45 percent of the customers entering his store will purchase on ordinary television set, 15 percent will purchase a plasma television set, and 40 percent will just be browsing. If 5 customers enter his store on a given day, what is the probability that he will sell exactly 2 ordinary sets and 1 plasma set on that day ?
5. A study found that 80% of students are too young to vote. Find the probability that at least 175 students can vote in a random sample of 800 students.
6. Suppose that in a community the distributions of heights of men and women (in centimeters) are $\mathcal{N}(173,40)$ and $\mathcal{N}(160,20)$, respectively. Calculate the probability that the average height of 10 randomly selected men is at least 5 centimeters larger than the average height of six randomly selected women.
7. Let (X, Y) be a couple of random variables with joint pdf

$$
f(x, y)=e^{-(x+y)}, x>0, y>0
$$

Let $U=X+Y$ and $V=X / Y$.
a. Find the joint pdf of the couple (U, V).
b. Find the marginal pdf of U and V.
8. Otto is trying out for the javelin throw to compete in the olympics. The lengths of his javelin throws is normally distributed with a mean of 290 feet and a standard deviation of 10 feet. Find the probability that the longest of three of his throws is 320 feet or more.
9. The time it takes for a student to finish an aptitude test (in hours) has the pdf

$$
f(x)=6(x-1)(2-x), 1<x<2
$$

Approximate the probability that the average length of time it takes for a random sample of 15 students to complete the test is less than 1 hour and 25 minutes.

