American University of Beirut
 STAT 230

Introduction to Probability and Random Variables
Summer 2009

Final Exam - solution

Exercise 1 Let X and Y be a couple of random variables with pdf

$$
f(x, y)=c y \quad 0<x<y<1
$$

a. find the value of the constant c
$\int_{0}^{1} \int_{0}^{y} c y d x d y=\int_{0}^{1} c y^{2} d y=\frac{c}{3}=1$ (cause f is a pdf), and hence $c=3$
b. find the marginal pdf of X and Y. Are X and Y independent?
$g(x)=\int_{x}^{1} 3 y d y=\frac{3}{2}\left[y^{2}\right]_{y=x}^{1}=\frac{3}{2}\left(1-x^{2}\right), \quad 0<x<1$
$h(y)=\int_{0}^{y} 3 y d x=3 y^{2}, \quad 0<y<1$
$f(x, y) \neq g(x) \times h(y)$, then X and Y are not independent.
c. find $P(X+Y>1 / 4)$ (its advised to sketch the region of integration !)

$$
P(X+Y>1 / 4)=1-\int_{0}^{\frac{1}{8}} \int_{x}^{\frac{1}{4}-x} 3 y d y d x=1-\frac{3}{2} \int_{0}^{1}\left(\frac{1}{16}-\frac{x}{2}\right) d x=1-\frac{3}{512}=\frac{509}{512}
$$

d. find $E(X)$

$$
E(X)=\int_{0}^{1} x g(x) d x=\frac{3}{2} \int_{0}^{1}\left(x-x^{3}\right) d x=\frac{3}{8}
$$

Exercise 2 Let (X, Y) be a couple of random variables with joint pdf

$$
f(x, y)=x+y, 0<x<1,0<y<1
$$

Let $U=X$ and $V=X Y$. Find the joint pdf of the couple (U, V), then find the marginal pdf of V.
solving the system of equations yields $x=u$ and $y=\frac{v}{u}$
the Jacobian is $J(u, v)=\left|\begin{array}{cc}1 & 0 \\ -\frac{v}{u^{2}} & \frac{1}{u}\end{array}\right|=\frac{1}{u}$
and hence

$$
g(u, v)=1+\frac{v}{u^{2}} \quad 0 \leq u \leq 1,0 \leq v \leq u
$$

$h(v)=\int_{v}^{1}\left(1+\frac{v}{u^{2}}\right) d u=\left[u-\frac{v}{u}\right]_{u=v}^{1}=2-2 v, \quad 0<v<1$
(its advised to sketch the region of integration)

Exercise 3 An electronic device runs until one of its three components fails. The lifetimes (in weeks), X_{1}, X_{2}, X_{3}, of these components are independent, and each has the pdf

$$
f(x)=\frac{2 x}{25} e^{-(x / 5)^{2}}, 0<x<\infty
$$

Find the probability that the device stop running in the first three weeks.
$p=1-\left(P\left(X_{1}>3\right)\right)^{3}=1-\left(\int_{3}^{\infty} \frac{2 x}{25} e^{-(x / 5)^{2}} d x\right)^{3}=1-\left(\left[-e^{-(x / 5)^{2}}\right]_{3}^{\infty}\right)^{3}=1-e^{-27 / 25}=0.66$
Exercise 4 Let X_{1}, \ldots, X_{18} be a random sample of size 18 with $\chi^{2}(1)=G\left(\frac{1}{2}, 2\right)$ distribution. Let $Y=X_{1}+X_{2}+\ldots+X_{18}$.
a. Find $P(9.39<Y \leq 34.80)$
$Y \rightsquigarrow \chi^{2}(18)$ (the sum of independent χ^{2} distribution is a χ^{2} distribution), and hence $P(9.39<Y \leq 34.80)=0.99-0.05=0.94$ (from the χ^{2} table with $r=18$)
b. Approximate $P(9.39<Y \leq 34.80)$
$E\left(X_{1}\right)=1$ and $\operatorname{Var}\left(X_{1}\right)=2$; by the central limit theorem $\frac{\frac{Y}{18}-1}{\frac{\sqrt{2}}{\sqrt{18}}}=3\left(\frac{Y}{18}-1\right)$ has a standard normal distribution $\mathcal{N}(0,1)$,
hence $P(9.39<Y \leq 34.80) \simeq P\left(3\left(\frac{9.39}{18}-1\right)<Z \leq 3\left(\frac{34.80}{18}-1\right)\right)=P(-1.43<Z \leq 2.8)=$ $0.9974-(1-0.9236)=0.921$

Exercise 5 Each item produced by a certain manufacturer is, independently, of acceptable quality with probability 0.95 . Approximate the probability that at most 10 of the next 150 items produced are unacceptable.

Let X be the number of unacceptable items among the $150 ; X$ has a Binomial distribution $b(150 ; 0.05)$.
X can be approximated by a normal distribution $Y \rightsquigarrow \mathcal{N}(7.5 ; 7.125)$.
$P(X \leq 10) \simeq P(Y \leq 10)=P\left(\frac{Y-7.5}{\sqrt{7.125}} \leq \frac{10-7.5}{\sqrt{7.125}}\right)=P(Z \leq 0.94)=0.8264$ (from the standard normal table)

