American University of Beirut
 STAT 230

Introduction to Probability and Random Variables
Spring 2009

Final Exam - solution

Exercise 1 Let $X \rightsquigarrow \mathcal{U}(0,1)$. Find the pdf of $Y=\theta \sqrt{-\ln X} \quad(\theta>0)$.
$g(x)=\theta \sqrt{-\ln x}$ is a one-to-one transformation; it maps $(0,1)$ into $(0, \infty)$.
$g^{-1}(y)=e^{(-y / \theta)^{2}}, \quad\left(g^{-1}\right)^{\prime}(y)=-\frac{2 y}{\theta^{2}} e^{-(y / \theta)^{2}}$,
and $h(y)=\left|\left(g^{-1}\right)^{\prime}(y)\right| \times f\left(g^{-1}(y)\right)=\frac{2 y}{\theta^{2}} e^{-(y / \theta)^{2}}, \quad 0<y<\infty$
Exercise 2 Let $f(x, y)=2 e^{-x-y}, 0 \leq x \leq y<\infty$ be the joint pdf of X and Y. Are X and Y independent?
$g(x)=\int_{x}^{\infty} 2 e^{-x-y} d y=2 e^{-2 x}, \quad 0<x<\infty$
$h(y)=\int_{0}^{y} 2 e^{-x-y} d x=2 e^{-y}\left(1-e^{-y}\right), \quad 0<y<\infty$
$g(x) \times h(y) \neq f(x, y)$, hence X and Y are not independent.
Exercise 3 Let X and Y be two independent random variables with exponential distribution with mean 1 .
a. find the pdf of $U=X / Y$.

Consider $V=Y$, solving the system of equations yields $x=u v$ and $y=v$
the Jacobian is $J(u, v)=\left|\begin{array}{ll}v & u \\ 0 & 1\end{array}\right|=v$
and hence

$$
g(u, v)=v e^{-v(1+u)} \quad 0<u<\infty, 0<v<\infty
$$

then $h(u)=\int_{0}^{\infty} v e^{-v(1+u)} d v=\frac{1}{(1+u)^{2}}, 0<u<\infty$
b. find $P(X<Y)$.

$$
P(X<Y)=P(U<1)=\int_{0}^{1} \frac{1}{(1+u)^{2}} d u=\left[-\frac{1}{1+u}\right]_{0}^{1}=\frac{1}{2}
$$

Exercise 4 Let X_{1}, X_{2}, X_{3} denote a random sample of size $n=3$ from a distribution with the geometric pdf

$$
P(X=k)=\left(\frac{3}{4}\right)\left(\frac{1}{4}\right)^{k-1} \quad k=1,2,3, \ldots
$$

a. find $P\left(X_{1}=1, X_{2}=3, X_{3}=1\right)$

$$
P\left(X_{1}=1, X_{2}=3, X_{3}=1\right)=P\left(X_{1}=1\right) \cdot P\left(X_{2}=3\right) \cdot P\left(X_{3}=1\right)=\frac{27}{1024}
$$

b. give the distribution of $Z=X_{1}+X_{2}+X_{3}$, then find $P(Z=14)$
Z has a negative binomial distribution; $Z \rightsquigarrow N B\left(3 ; \frac{3}{4}\right)$, and $P(Z=14)=C_{13}^{2}\left(\frac{1}{4}\right)^{3}\left(\frac{3}{4}\right)^{11}$
c. let $Y=\min \left(X_{1}, X_{2}, X_{3}\right)$. Find $P(Y \leq n)$, then deduce the pdf of Y.

$$
\begin{aligned}
& P(Y \leq n)=1-P(Y>n)=1-P\left(\min \left(X_{1}, X_{2}, X_{3}\right)>n\right)=1-\left(P\left(X_{1}>n\right)\right)^{3} \\
& \text { but } P\left(X_{1}>n\right)=\sum_{k=n+1}^{\infty}\left(\frac{3}{4}\right)\left(\frac{1}{4}\right)^{k-1}=\left(\frac{1}{4}\right)^{n}
\end{aligned}
$$

$$
\text { (or } \left.\left\{X_{1}=n\right\}=\{\text { event the first } n \text { trials are all failures }\} \text {, hence } P\left(X_{1}>n\right)=\left(\frac{1}{4}\right)^{n}\right)
$$

$$
\text { then } P(Y \leq n)=1-\left(\frac{1}{4}\right)^{3 n}
$$

$$
-P(Y=n)=P(Y \leq n)-P(Y \leq n-1)=\left(\frac{1}{4}\right)^{3 n-3}-\left(\frac{1}{4}\right)^{3 n}=63 .\left(\frac{1}{4}\right)^{3 n}, \quad n=1,2,3, \ldots
$$

Exercise 5 The weight of a 6-pound box of soap has a normal distribution with mean 6.05 and variance 0.04 . If nine boxes of soap are selected, find the probability that their total weight exceed 55.

Let $X_{1}, X_{2}, \ldots, X_{9}$ be the weight of the nine boxes respectively, and let $Y=X_{1}+X_{2}+\ldots+X_{9}$, hence $Y \rightsquigarrow \mathcal{N}(54.45 ; 0.36)$
$P(Y>55)=P\left(\frac{Y-54.45}{0.6}>\frac{55-54.45}{0.6}\right)=P(Z>0.92)=1-0.8212=0.1788$
Exercise 6 Let $X_{1}, X_{2}, \ldots, X_{48}$ be a random sample of size 48 from the distribution with pdf $f(x)=\frac{1}{x^{2}}, 1<x<\infty$. Approximate the probability that at most 10 of these random variables have values greater than 4 .
$P\left(X_{1}>4\right)=\int_{4}^{\infty} \frac{1}{x^{2}} d x=0.25$.
Let Y be the number of variables that have values greater then 4 among the 48 , then Y has a Binomial distribution $b(48 ; 0.25)$.
Y can be approximated by a normal distribution $X \rightsquigarrow \mathcal{N}(12 ; 9)$.
$P(Y \leq 10) \simeq P(X \leq 10)=P\left(\frac{X-12}{3} \leq \frac{10-12}{3}\right)=P(Z \leq-0.66)=P(Z>0.66)=1-0.7454=$ 0.2546

