American University of Beirut
 STAT 230

Introduction to Probability and Random Variables
 Fall 2008-2009

Final Exam - solution

Exercise 1 Let $f(x, y)=2,0 \leq x \leq y<1$, be the joint pdf of X and Y. Find $P\left(X>Y^{2}\right)$.

$$
P\left(X>Y^{2}\right)=\int_{0}^{1} \int_{y^{2}}^{y} 2 d x d y=\int_{0}^{1} 2\left(y-y^{2}\right) d y=1 / 3
$$

Exercise 2 Let X_{1}, X_{2}, X_{3} be independent random variables that represent lifetimes (in hours) of three key components of a device. Say their respective distributions are exponential with means 1000,1500 , and 2000. Let $Y=\min \left(X_{1}, X_{2}, X_{3}\right)$. Find $P(Y>1000)$.
$P(Y>1000)=P\left(\min \left(X_{1}, X_{2}, X_{3}\right)>1000\right)=P\left(X_{1}>1000\right) * P\left(X_{2}>1000\right) * P\left(X_{3}>1000\right)$ (cause X_{1}, X_{2}, X_{3} are independent) but if $X \mapsto f(x)=\frac{1}{\theta} e^{-x / \theta}$, then $P(X>y)=\int_{y}^{\infty} \frac{1}{\theta} e^{-x / \theta} d x=e^{-y / \theta}$; hence $P\left(X_{1}>1000\right)=e^{-1}, P\left(X_{2}>1000\right)=e^{-2 / 3}$, and $P\left(X_{3}>1000\right)=e^{-0.5}$ and $P(Y>1000)=e^{-1} e^{-2 / 3} e^{-0.5}=e^{-13 / 6}$

Exercise 3 A consumer buys n light bulbs, each of which has a lifetime that has a normal distribution with mean 800 hours, and a standard deviation of 100 hours. A light bulb is replaced by another as soon as it burns out. Assuming independence of the lifetimes, find the smallest n so that the succession of light bulbs produces light for at least 10000 hours with probability 0.8997 .

Let $X_{1}, X_{2}, \ldots, X_{n}$ be the lifetimes of the n bulbs used in succession.
find n such that $P\left(X_{1}+X_{2}+\ldots+X_{n}>10000\right)=0.8997$; but $X_{i} \mapsto \mathcal{N}\left(800,100^{2}\right)$, and $X_{1}+X_{2}+\ldots+X_{n} \mapsto \mathcal{N}\left(800 n, 100^{2} n\right)$
hence $P\left(X_{1}+X_{2}+\ldots+X_{n}>10000\right)=P\left(\frac{X_{1}+X_{2}+\ldots+X_{n}-800 n}{100 \sqrt{n}}>\frac{100-8 n}{\sqrt{n}}\right)=P\left(Z>\frac{100-8 n}{\sqrt{n}}\right)=$ 0.8997 .

Form normal table, $\frac{100-8 n}{\sqrt{n}}=-1.28$, and $n=14$ by solving a quadratic equation.
Exercise 4 Let X and Y be a couple of random variables with pdf

$$
f(x, y)=\frac{1}{x^{2} y^{2}} \quad x \geq 1, y \geq 1
$$

a. find the joint pdf of $U=X Y$ and $V=X / Y$
solving the system of equations yields $x=\sqrt{u v}$ and $y=\sqrt{\frac{u}{v}}$
the Jacobian is $J(u, v)=\left|\begin{array}{cc}\frac{\sqrt{v}}{2 \sqrt{u}} & \frac{\sqrt{u}}{2 \sqrt{v}} \\ \frac{1}{2 \sqrt{u v}} & -\frac{\sqrt{u}}{2 v \sqrt{v}}\end{array}\right|=-\frac{1}{2 v}$
and hence

$$
g(u, v)=\frac{1}{2 u^{2} v} \quad u v \geq 1, \frac{u}{v} \geq 1
$$

b. find the marginal pdf of U and V

$$
\begin{aligned}
& h(u)=\int_{\frac{1}{u}}^{u} \frac{1}{2 u^{2} v} d v=\frac{1}{2 u^{2}}[\ln v]_{\frac{1}{u}}^{u}=\frac{\ln u}{u^{2}} \quad u \geq 1 \\
& k(v)=\left\{\begin{array}{l}
\int_{1 / v}^{+\infty} \frac{1}{2 u^{2} v} d u=\frac{1}{2} \quad 0 \leq v \leq 1 \\
\int_{v}^{+\infty} \frac{1}{2 u^{2} v} d u=\frac{1}{2 v^{2}} \quad v \geq 1
\end{array}\right.
\end{aligned}
$$

Exercise 5 Let X have a beta distribution with parameters α and β; the pdf of X is given by:

$$
\begin{gathered}
f(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} \quad 0<x<1 \\
E(X)=\int_{0}^{1} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha}(1-x)^{\beta-1} d x=\frac{\alpha}{\alpha+\beta} \int_{0}^{1} \frac{\Gamma(\alpha+\beta+1)}{\Gamma(\alpha+1) \Gamma(\beta)} x^{\alpha}(1-x)^{\beta-1} d x=\frac{\alpha}{\alpha+\beta}
\end{gathered}
$$

(the last integral is the pdf of a beta distribution with parameters $\alpha+1$ and β)

$$
\begin{aligned}
E\left(X^{2}\right) & =\int_{0}^{1} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha+1}(1-x)^{\beta-1} d x=\frac{\alpha(\alpha+1)}{(\alpha+\beta+1)(\alpha+\beta)} \int_{0}^{1} \frac{\Gamma(\alpha+\beta+2)}{\Gamma(\alpha+2) \Gamma(\beta)} x^{\alpha}(1-x)^{\beta-1} d x \\
& =\frac{\alpha(\alpha+1)}{(\alpha+\beta+1)(\alpha+\beta)}
\end{aligned}
$$

hence, $\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}=\frac{\alpha(\alpha+1)}{(\alpha+\beta+1)(\alpha+\beta)}-\left(\frac{\alpha}{\alpha+\beta}\right)^{2}=\frac{\alpha \beta}{(\alpha+\beta+1)(\alpha+\beta)}$
Exercise 6 Fifty numbers are rounded off to the nearest integer and then summed. If the individual round-off errors are uniformly distributed over the interval $(-1 / 2,1 / 2)$. Find the probability that the resultant sum differs from the exact sum by more than 3 .

Let $X_{1}, X_{2}, \ldots, X_{50}$ be the errors for the 50 numbers; $X_{i} \mapsto \mathcal{U}(-1 / 2,1 / 2), E\left(X_{i}\right)=0$, and $\operatorname{Var}\left(X_{i}\right)=1 / 12$
$\frac{X_{1}+X_{2}+\ldots+X_{50}}{50} \sim \mathcal{N}\left(0, \frac{1}{600}\right)$ by the central limit theorem.
$P\left(-3<X_{1}+X_{2}+\ldots+X_{50}<3\right)=P\left(-\frac{3 \sqrt{600}}{50}<Z<\frac{3 \sqrt{600}}{50}\right)=P(-1.47<Z<1.47)=$ $0.9292-(1-0.9292)=0.86$ (from the normal table)

