American University of Beirut
 STAT 230

Introduction to Probability and Random Variables
Fall 2009-2010
quiz \# 1-solution

1. Twenty workers are to be assigned to 20 different jobs, one to each job. How many different assignments are possible ?

20 !
2. Let A and B be two independent events with $P(A)=1 / 3$ and $P(B)=1 / 4$. Find $P(A \mid A \cup \bar{B})$ $P(A \mid A \cup \bar{B})=\frac{P(A \cap(A \cup \bar{B}))}{P(A \cup \bar{B})}=\frac{P(A \cap \bar{B})}{P(A \cup \bar{B})}=\frac{P(A) P(\bar{B})}{P(A)+P(\bar{B})-P(A) P(\bar{B})}=\frac{(1 / 3) \cdot(3 / 4)}{1 / 3+3 / 4-1 / 4}=\frac{3}{10}$
3. Suppose we turn over cards simultaneously from two well shuffled decks of ordinary playing cards. We say we obtain an exact match on a particular turn if the same cards appears from each deck; for example, the queen of spades against the queen of spades. Find the probability of at least one exact match.
$p=1-\frac{1}{2!}+\frac{1}{3!}-\frac{1}{4!}+\ldots-\frac{1}{52!}$ (matching formula without replacement)
4. An excellent free shooter attempts several free throws until she misses; if $p=0.9$ is the probability of making a free throw, find the probability that the third miss occurs on the 30th attempt.
$p=C_{29}^{2}(0.9)^{27}(0.1)^{3}$
5. Players A and B play a sequence of independent games. Player A throws a die first and wins on a "six". If he fails, B throws and wins on a "five" or "six". If he fails, A throws and wins on a "four", "five" or "six". And so on. Find the probability of each winning the sequence.
$P(A$ wins $)=\frac{1}{6}+\frac{5}{6} \cdot \frac{4}{6} \cdot \frac{3}{6}+\frac{5}{6} \cdot \frac{4}{6} \cdot \frac{3}{6} \cdot \frac{2}{6} \cdot \frac{5}{6}=\frac{169}{324}$, and
$P(B$ wins $)=1-\frac{169}{324}=\frac{155}{324}$
6. Find $P(\bar{B} \mid \bar{A})$, if $P(A \mid B)=1$
$P(A \mid B)=1$ means that B is included in A, then \bar{B} is included in \bar{A}, and then $P(\bar{B} \mid \bar{A})=1$
7. An urn contains 8 white balls and 12 blue balls. One of the balls is drawn at random, if its white it is put back in the urn with 7 additional white balls, and is simply put back if its blue. A ball is then selected form the urn, find the probability that the first ball was blue given that the second ball drawn is also blue.

Let $B_{1}=\{$ event the first ball is blue $\}$, and $B_{2}=\{$ event the second ball is blue $\}$,
$P\left(B_{1} \mid B_{2}\right)=\frac{P\left(B_{2} \mid B_{1}\right) * P\left(B_{1}\right)}{P\left(B_{2} \mid B_{1}\right) * P\left(B_{1}\right)+P\left(B_{2} \mid \overline{B_{1}}\right) * P\left(\overline{B_{1}}\right)}=\frac{\frac{12}{20} \cdot \frac{12}{20}}{\frac{12}{20} \cdot \frac{12}{20}+\frac{12}{27} \cdot \frac{8}{20}}=\frac{81}{121}$
8. A purchaser of electrical components buys them in lots of size 10 . It is his policy to inspect 3 components randomly from a lot and accept the lot only if all 3 are non defective. If 30 percent of the lots have 4 defective components and 70 percent have only 1 , what proportion of lots does the purchaser reject?
$p($ reject $)=1-p($ accept $)=1-\left(0.3 * \frac{C_{6}^{3}}{C_{10}^{3}}+0.7 * \frac{C_{9}^{3}}{C_{10}^{3}}\right)=0.46$, hence the proportion is 46%
9. Five Americans, four French and three Russians participate in a chess tournament. In how many different ways can they be classified if only the nationality of the players matters ?

$$
\frac{12!}{5!4!3!}
$$

10. A, B, and C take turns in flipping a fair coin, A first, then B, then C, then A, and so on. The first one to get a head wins. Find the probability of winning for player A.

$$
\begin{aligned}
P(A \text { wins }) & =P(H)+P(\text { TTT } H)+P(\text { TTTTTT } H)+\ldots \\
& =\frac{1}{2}+\frac{1}{2^{4}}+\frac{1}{2^{7}}+\ldots=\sum_{n=0}^{\infty} \frac{1}{2} \cdot \frac{1}{2^{3 n}}=\frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{8^{n}}=\frac{1}{2} \cdot \frac{1}{1-\frac{1}{8}}=\frac{4}{7}
\end{aligned}
$$

11. A person tosses a fair coin until a tail appears for the first time. If the tail appears on the nth flip, the person wins 2^{n} dollars. Let X denote the player's winnings. Show that $E(X)=+\infty$. This problem is known at the St. Petresburg paradox.

$$
\begin{aligned}
& X \rightsquigarrow\left\{2,2^{2}, 2^{3}, \ldots, 2^{n}, \ldots\right\} \\
& P(X=n)=\frac{1}{2^{n}} \\
& E(X)=\sum_{n=1}^{\infty} 2^{n} \cdot \frac{1}{2^{n}}=\sum_{n=1}^{\infty} 1=+\infty
\end{aligned}
$$

