

AMERICAN UNIVERSITY OF BEIRUT STATISTICS 230, Final Exam

Jan 31, 2005 Time = 1 Hour and 30 Minutes

You are allowed to use a formula sheet.

- 1. Let X be a discrete random variable that assumes positive probabilities on the set $\{1, 2, \dots\}$. Show that $E(X) = \sum_{x=0}^{\infty} [1 F_X(x)]$, when it exists.
- 2. Let X and Y be two random variables with a joint cumulative distribution function $F(x,y) = P(X \le x, Y \le y)$. Show that $F_X(x) + F_Y(y) 1 \le F(x,y) \le \sqrt{F_X(x)F_y(y)}$, where $F_X(x)$ and $F_Y(y)$ are the respective cumulative distribution functions of the random variables X and Y.
- 3. Let X_1, X_2, \dots, X_n be n independent and identically distributed random variables with common probability density function $f(x) = ke^{-|x-\theta|}$, if $-\infty < x < \infty$.
 - (a) Determine the value of k such that f(x) is a probability density function.
 - (b) Find $\hat{\theta}$, the maximum likelihood estimate of θ . Hint: You may need to minimize $\sum_{i=1}^{n} |X_i \theta|$
 - (c) if n = 3, is the estimator found in (2) unbiased?
- 4. Let X denote the time required to do a computation using algorithm written in programming language A, and let Y denote the time required to the same calculations using programming language B. Assume further that X is normally distributed and with mean 10 seconds and standard deviation 3 seconds and Y is normally distributed with mean 9 seconds and standard deviation of 4 seconds.
 - (a) What is the distribution of X Y?
 - (b) Find the probability that a given calculation will run faster using A than when using B.

