STAT 230

Final Exam
Feb 1, 2006
Time $=1$ hour

1. Let $\underline{X}=\left(x_{1}, \cdots, x_{m}\right)^{\prime}$ be a random sample from the $p d f$

$$
f(x ; \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2 \sigma^{2}}(x-10)^{2}\right]
$$

If $\sum_{i=1}^{20} X_{i}=180$ and $\sum_{i=1}^{20} X_{i}^{2}=2000$, find a 90% confidence interval for σ.
2. Let X be a Bernoulli random variable with a $p d f$

$$
f(x ; \theta)=\theta^{x}(1-\theta)^{1-x} \text { if } x=0 \text { or } 1 \text { and } 0<\theta<1
$$

We would like to test the hypothesis

$$
H_{0}: \theta=\frac{1}{2} \text { vs } H_{a}: \theta=\frac{2}{3}
$$

It is agreed to perform two observations X_{1} and X_{2}. If both $X_{1}=1$ and $X_{2}=1$ then we reject H_{0}; otherwise we don't reject H_{0}. Find $\alpha=P$ (Type I error) and $\beta=P$ (Type II error).
3. If X has the $p d f$

$$
f(x ; \mu)=\frac{1}{10 \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{10}\right)^{2}\right]
$$

How large should n be chosen so that when testing $H_{0}: \mu=100$ vs $H_{a}: \mu=110$ the values of $\alpha=0.05$ and $\beta=0.10$?
4. A box is known to contain either 3 red and 5 black balls or 5 red and 3 black balls. Three balls are drawn randomly and without replacement. If three red balls are obtained, the decision will be 5 red and 3 black; otherwise, the decision will be 3 red and 5 black balls. Calculate the values of α and β.

