AMERICAN UNIVERSITY of BEIRUT
 STAT 230, Final Examination
 Time $=1$ hour and 30 minutes
 Jan 25, 2008

You are allowed to use a calculator, one formula sheet, tables of discrete and continuous distributions. (GOOD LUCK!)

1. Consider the experiment of rolling a pair of fair 4 -sided dice. Let X_{1} be the outcome on die 1 , and X_{2} be the outcome on die 2 respectively. Define $Y_{1}=\max \left\{X_{1}, X_{2}\right\}$ and $Y_{2}=\left|X_{1}-X_{2}\right|$. Determine the Covariance of Y_{1} and Y_{2}. [15 pts]
2. Let the joint pdf of the two random variables X and Y be $f(x, y)=k x$ if $0<x<y<1,0$ elsewhere, and k is a positive constant.
(a) Find the value of k such that $f(x, y)$ is a joint $p d f$. [5 pts]
(b) Determine the marginal $p d f$ of $X, f_{1}(x)$, and the marginal $p d f$ of $Y, f_{2}(y)$, respectively. [10 pts]
(c) Are the random variables X and Y independent? [5 pts]
3. Let X_{1} and X_{2} be a random sample of size 2 from the standard normal distribution. Let $Y_{1}=\left(X_{1}+X_{2}\right) / \sqrt{2}$ and $Y_{2}=\left(X_{1}-X_{2}\right) / \sqrt{2}$. Show that Y_{1} and Y_{2} are independent standard normal random variables. Hint: Try to find the joint mgf of $\left(Y_{1}, Y_{2}\right)=E\left(e^{\left\{t_{1} Y_{1}+t_{2} Y_{2}\right\}}\right)$. [15 pts]
4. Let X_{1} and X_{2} be a random sample from the exponential distribution with common pdf $f(x)=e^{-x}$ if $x>0$. Let $Y_{1}=X_{1} / X_{2}$ and $Y_{2}=$ $X_{1}+X_{2}$.
(a) Find the joint distribution of $\left(Y_{1}, Y_{2}\right)$. [10 pts]
(b) Find the mean and variance of Y_{1}. [10 pts]
5. The "Fill" problem is important in many industries, like those making cereal, tooth paste and so on. If such an industry claims that it is selling 100 grams of its product in a container or else the FDA will crack down. Although the FDA will allow a very few percentage to have a fill of less than 100 grams.
(a) If the contents X of a container has a normal distribution with mean $\mu=100.01$ and an unknown variance of σ^{2}. Find the value of σ^{2} if $P(X<100)=0.025$ [10 pts]
(b) In 50 independent such measurements, approximate the probability that at least one container is under 100 grams of fill. [5 pts]
6. In the casino game of Craps, the probability of winning a bet is 0.493 . Let Y denote the number of winnings in a series of 1000 bets that are placed. Approximate $P(Y>500)$. [15 pts]
