American University of Beirut
 STAT 230

Introduction to Probability and Random Variables
Fall 2007

Final Exam

Exercise 1 (15 points) Let $f(x)=\frac{2}{5}|x|$, if $-1<x<2$, be the pdf of a continuous random variable X. Find the cdf and the pdf of $Y=X^{2}$.

Exercise 2 Let X be a continuous random variable with pdf

$$
f(x)=k x^{2} e^{-x^{2} / 2} \quad 0<x<+\infty
$$

a. (7 points) find the value of the constant k
b. (8 points) find $E(X)$ and $\operatorname{Var}(X)$

Exercise 3 (10 points) Show that probability that the fifth head is observed on the tenth independent flips of a fair coin is $63 / 512$.

Exercise 4 (10 points) Roll a pair of fair dice. Let X denote the maximum of the two faces and Y the minimum of the two faces. Compute $\operatorname{Cov}(X, Y)$.

Exercise 5 Let X_{1} and X_{2} be independent $\chi^{2}(2)$ distributions, i.e.

$$
f(x)=\frac{1}{2} e^{-x / 2} \quad 0<x<+\infty
$$

a. (10 points) find the joint pdf of $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=X_{1}-X_{2}$
b. (10 points) find the marginal pdf of Y_{2}

Exercise 6 (15 points) Let X and Y be two independent Binomial random variables with parameters n and $p=1 / 2$. Show that $P(X=Y)=\frac{(2 n)!}{(n!)^{2} \cdot 2^{2 n}}$
hint: you may use the identity $\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}$
Exercise 7 (15 points) On each bet, a gambler loses 1 with probability 0.7 , loses 2 with probability 0.2 , or wins 10 with probability 0.1 . Approximate the probability that the gambler will be losing after the first 100 bets.
(hint: you may use the Central Limit Theorem, and that $F_{Z}(-0.29)=0.39$)

