American University of Beirut STAT 230

Introduction to Probability and Random Variables Fall 2007

Final Exam

Exercise 1 (15 points) Let $f(x) = \frac{2}{5}|x|$, if -1 < x < 2, be the pdf of a continuous random variable X. Find the cdf and the pdf of $Y = X^2$.

Exercise 2 Let X be a continuous random variable with pdf

$$f(x) = kx^2 e^{-x^2/2} \qquad 0 < x < +\infty$$

- **a.** (7 points) find the value of the constant k
- **b.** (8 points) find E(X) and Var(X)

Exercise 3 (10 points) Show that probability that the fifth head is observed on the tenth independent flips of a fair coin is 63/512.

Exercise 4 (10 points) Roll a pair of fair dice. Let X denote the maximum of the two faces and Y the minimum of the two faces. Compute Cov(X, Y).

Exercise 5 Let X_1 and X_2 be independent $\chi^2(2)$ distributions, i.e.

$$f(x) = \frac{1}{2} e^{-x/2}$$
 $0 < x < +\infty$

- **a.** (10 points) find the joint pdf of $Y_1 = X_1 + X_2$ and $Y_2 = X_1 X_2$
- **b.** (10 points) find the marginal pdf of Y_2

Exercise 6 (15 points) Let X and Y be two independent Binomial random variables with parameters n and p = 1/2. Show that $P(X = Y) = \frac{(2n)!}{(n!)^2 \cdot 2^{2n}}$

hint: you may use the identity $\sum_{k=0}^{n} {\binom{n}{k}}^2 = {\binom{2n}{n}}$

Exercise 7 (15 points) On each bet, a gambler loses 1 with probability 0.7, loses 2 with probability 0.2, or wins 10 with probability 0.1. Approximate the probability that the gambler will be losing after the first 100 bets.

(hint: you may use the Central Limit Theorem, and that $F_Z(-0.29) = 0.39$)