EECE 230 Introduction to Programming, Sections 3.4, and 12
Programming Assignment 6

Thursday Nov 6, 2012

This programming assignment consists of 3 problems.

All the problem are syntax oriented: they involve either a a very simple problem, or rewriting a code
from a previous Programming Assignment as a function. The objective is to get used to functions
and pointers.

It is due on Tuesday Nov 13 in the Lab.

Related reading: functions, pointers, passing parameters to functions.

Lab structure and regulations:

* The 3 hours Lab session is on Tuesdays in Lab rooms 1,2, and 5 from 2:00 pm to 5:00 pm. It
consists of three parts:

- Occasional Solving Session (not graded but attendance mandatory)

- Programming Assignment (graded)
Programming Assignments will be posted on Moodle on weekly basis. Typically, a Pro-
gramming Assignment requires much more than the time allocated for this part in the
Lab, so you are supposed to complete the major part of the assignment at home. The Lab
instructor will grade your assignment and can help you with the problems you are facing.

- Occasional graded weekly quiz

* You are supposed to submit your own work. Cheating will not be tolerated and will be dealt
with severely: zero grades on the programming assignments, disciplinary committee, Dean’s
warning.

* Lab attendance is mandatory. Violating this rule can lead to a failing grade.

Problem 1 (Circles: functions warmup)

Do Programming Exercise 6.6 [Malik, page 343 in the third edition]:

The following formula gives the distance between two points (z1,y1) and (z2,y2) in the Cartesian
plane:

Vi(zs —21)2 + (Y2 — 11)?

Given the center and a point on the circle, you can use this formula to find the radius of the circle. Write
a program that prompts the user to enter the center and a point on the circle. The program should
then output the circle’s radius, diameter, circumference, and area. Your programs must have at least the
following functions:

a) distance: This function takes as its parameters four numbers that represent two points in the plane
and returns the distance between them.

b) radius: This function takes as its parameters four numbers that represent the center and a point on
the circle, calls the function distance to find the radius of the circle, and returns the circle’s radius.

c) circumference: This function takes as its parameter a number that represents the radius of the
circle and returns the circle’s circumference. (If r is the radius, the circumference is 27r.)

d) area: This function takes as its parameter a number that represents the radius of the circle and
returns the circle’s area. (If r is the radius, the area is 7r?2.)

Assume that m = 3.1416.

Problem 2 (Selection Sort revisited)

a) Array Print function: Write the function arrayPrint which takes as its parameters (a pointer
to) an array of integers, and its size. It prints the array.

b) Array Smallest function: Write a function arraySmallest which takes as parameters (a pointer
to) an array A of integers and two indices start and end of A (assume 0 < start < end). It supposed
to find and return the index of the smallest element in A[start...end)].

¢) Selection Sort function: Using the ArraySmallest function in part (b) and the swap function
we did in class, write the selection sort function selectionSort which takes as its parameters (a
pointer to) an array of integers, and its size. This function sorts the array using the Selection Sort
algorithm [Problem 4 of Programming Assignment 4].

Using those functions, you are supposed to get a very simple and structured code for the selection
sort algorithm.

Look first at the solution of Problem 3 in PA 3.

d) Test Program: Write the following program to test the above functions.

prototype of printArray
prototype of arraySmallest
prototype of swap
prototype of selectionSort

main function:
1. ask the user to an enter an integer n
allocate memory for an array A of integers of size n
£fill the array with the user input
call the printArray function to print A
call the selectionSort function to sort A
call the printArray function to print the sorted version of A

O W N

~

free the memory allocated for the array A
end of main

bodies of the above 4 functions

Problem 3 (String functions)

a) Deleting a character from a string revisited: Write the function myStringDeleteChar which
takes as input parameters a C-string str and an integer .

It is supposed to delete the the i’th character of s, where ¢ = 0 corresponds to the first character,
i =1 corresponds to the second character, and so on

Moreover, myStringDeleteChar is supposed to return the value of the deleted character.

If i < 0 or i > length(s), your function is supposed to return the null character \0’ without
modifying the string.

You can use the strien function.

Use the following program to test your functions:

#include<iostream>
using namespace std;

// myStringDeleteChar prototype

int main()

{
char s[] = ‘‘eece230’’;
char ¢ = myStringDeleteChar(s,3);
cout <<c<<endl;
cout <<s<<endl;
return O;
}

// myStringDeleteChar body
You are supposed to get

e
eec230

Use the code from the solution of Problem 2 of PA 4 and appropriately put it in the body of a
function.

Pointers version: Repeat part (a) without using the array subscription operator [] at all in
the prototype or body of the myStringDeleteChar function. Use instead the pointer declaration
operator * and the indirection operator *.

Remove duplicate spaces function

Write a function removeDuplicateSpaces, which given two C-strings sl and s2, removes the du-
plicate (consecutive) spaces from sl and stores the resulting string in s2. Assume that enough
memory is allocated to s2 before calling the function. For simplicity, you can assume that s1 does
not contain tabs.

For instance if s1 contains

Write a function removeDuplicateSpaces, which given two C-strings
the function is supposed to store in s2:

Write a function removeDuplicateSpaces, which given two C-strings

Use the following test program

#include<iostream>
using namespace std;

// removeDuplicateSpaces prototype

int main()

{
char s1[500], s2[500];
cout << ‘‘Enter string:’’;

cin.get(s1,500);// read a line (possibly containing spaces) of length
// at most 499 characters and strote it into si.

removeDuplicateSpaces(sl,s2);

cout << ‘‘Duplicate spaces removed:’’<<endl;

cout<< s2 <<endl;

return O;

}

// removeDuplicateSpaces body

