
Common Mistakes in Recursion

In this document we discuss two common mistakes when writing recursive functions. We will provide
two examples of incorrect binary search. These examples may look useless and contrived, since you
already have a correct version of binary search and other well-known algorithms (Merge Sort,
QuickSort) in the slides. But you may be required to write some variant of these algorithms, and
knowing about the common mistakes may help you to avoid them when you write a variant of these
well-known algorithms.

Mistake#1: Unreachable base case resulting in infinite recursion:
Consider the following WRONG code for recursive binary search:

int recursiveBinarySearch(int * A,int start,int end, int x)
{
if(start <=end) {
int mid = (start+end)/2;
if (A[mid] < x)
return recursiveBinarySearch(A,mid,end,x);
else if (A[mid] > x)
return recursiveBinarySearch(A,start,mid-1,x);
else if (A[mid] ==x)
return mid; // this is a base case
}
else return -1;// another base case of the recursion
}

This code is almost identical to the one given in the slides except that we replaced
return recursiveBinarySearch(A,mid+1,end,x);
by:
return recursiveBinarySearch(A,mid,end,x);

At first sight, the code still appears correct. It is true that if A[mid]<x , then the value x must
have an index between mid and end, if it appears at all in the array.

Unfortunately this code isn't correct. Try it on the input A={0,1,2,3,4,5} and x= 5.
It will fail. Why ? Because the base case is unreachable: First the function is called with
arguments start= 0 and end=5, then it will call itself recursively with start = 2 and end = 5,
then it will call itself recursively with start = 3 and end = 5, then it will call itself with start = 4 and end
=5 and then... it will call itself again with start = 4 and end =5, and the program will be stuck in an
infinite recursion. Sometimes this failure will manifest itself very weirdly, for example by keeping the
screen blank for a few seconds and then printing “Press any key to continue” and stopping the program.
Unlike an infinite loop, infinite recursion cannot really go on very long, because each of the
“workspaces” used by the recursive calls consumes memory, and very quickly the program will run out
of memory. Such an error is called a stack overflow.
How do you do to avoid such errors ? The general strategy is very simple: You should make sure that

the recursive calls ALWAYS handle subproblems strictly smaller than the original problem, and you
should make sure that the base case all problem sizes smaller than a certain threshold. In the above case
the size of the right subarray was not always strictly smaller than the entire array, and that was the
cause of the error.

Mistake #2: Making out-of-bounds recursive calls
This kind of error is common when you write recursive algorithms on arrays.
Very often, recursive algorithms on arrays are divide-and-conquer algorithms which work by dividing
the original arrays in ever-smaller subarrays. For example, Binary Search, Quicksort, and Merge Sort
work in this fashion. Subarrays are usually specified using their first index and their last index, and
these two indexes are passed as arguments. You have to make sure that you don't pass out-of-
bound indexes as arguments in your recursive calls, and if you can't or don't want to avoid it, you
should make sure your code can handle such invalid arguments.

Example: Suppose we slightly modify the Binary Search function by adding the statement:
if(A[start]==x) return start; at the very beginning of the function, and that we write the following
program:

#include <iostream>
using namespace std;

int B[] = {0,1,2,3,4,5,6,7,8,9,10};
int C[] = {11,0};

int recursiveBinarySearch(int * A,int start,int end, int x)
{

if(A[start]==x) return start; //Line L1
if(start <=end) {
int mid = (start+end)/2;
if (A[mid] < x)
return recursiveBinarySearch(A,mid+1,end,x);
else if (A[mid] > x)
return recursiveBinarySearch(A,start,mid-1,x);
else
return mid; // this is a base case
}
else return -1;// another base case of the recursion
}

int main(){

int a = recursiveBinarySearch(B,0,10,11);
cout << a << endl << flush;
return 0;

}

At first sight, the Binary Search function still appears to be correct, although the first line of the
function is not necessary. But if you run the above program, the output will be wrong (It will return 11,
when the last valid index in array B is only 10, and the function should have returned -1). Why ?

Because at some point, the start index will be outside the array. This fact is often overlooked but even
if the line we added (L1) is removed, it is still true that the start variable will be greater than 10 at
some time. To verify this, add a cout statement at the beginning of the recursive function to check the
value of the arguments. And if B={10,11,12} and x = -1, the recursiveBinarySearch function will at
some point be recursively called with a negative end index. However if Line L1 is omitted, these out-
of-bounds values will not cause any error because they will not be used to index any element in the
array, as the condition if(start<=end) will filter out these cases: The first time either start or end will
become an invalid index, the condition (start<=end) will become false (This may not be obvious at first
but will become clear with a bit of thinking.) This is so because the function was written in a way that
handles this problem.
OK, now assume that you have written your own recursive function, and that it does not return the
correct answer, and you suspect that the code contains an out-of-bounds error. How can you find this
error ? One good way would be to add a cout statement at the beginning of the recursive function, to
display its arguments, especially the ones corresponding to subarray bounds, and run the program to
see if some of these bounds look wrong. for example :

int recursiveBinarySearch(int * A,int start,int end, int x)
{
cout << “ start = “ << start << “ end = “ << end << endl << flush;
if(A[start]==x) return start; //Line L1
if(start <=end) {
int mid = (start+end)/2;
if (A[mid] < x)
return recursiveBinarySearch(A,mid+1,end,x);
else if (A[mid] > x)
return recursiveBinarySearch(A,start,mid-1,x);
else
return mid; // this is a base case
}
else return -1;// another base case of the recursion
}

Please note that the cout statement ends with << flush . This is necessary when you use cout
for debugging purposes. This tells the computer to display the result as soon as the cout statement is
executed. If flush is omitted, the computer will sometimes store the output in a buffer, and will wait
until the function stops executing to display the contents of the buffer; but if the functions fails in a
runtime error, the contents of the buffer will not be displayed at all.

