
EECE 230 Introduction to Programming, Sections 3,4, and 12

Programming Assignment 9

Dec 11, 2012

• This programming assignment consists of 3 problems.

• It is due on Tues Dec 18 in the Lab

• Related material: Structures and Classes.

• Lab structure and regulations:

⋆ The 3 hours Lab session is on Tuesdays in Lab rooms 1,2 and 5 from 2:00 pm to 5:00 pm. It
consists of three parts:

- Occasional Solving Session (not graded but attendance mandatory)

- Programming Assignment (graded)

- Occasional graded weekly quiz

⋆ You are supposed to submit your own work. Cheating will not be tolerated and will be dealt
with severely: zero grades on the programming assignments, disciplinary committee, Dean’s
warning.

⋆ Lab attendance is mandatory. Violating this rule can lead to a failing grade.

Problem 1 (Complex number class)
Design a class complexNumber that defines complex numbers as an Abstract Data Type (ADT).
Include the member functions:

• complexNumber :: complexNumber(double, double) // constructor

• complexNumber :: complexNumber() // default constructor

• void complexNumber :: add(complexNumber &)

• void complexNumber :: multiply(complexNumber &)

• void complexNumber :: divide(complexNumber &)

• double complexNumber :: norm() // the norm of x + iy is
√

x2 + y2

• void complexNumber :: print()

For example you should be able to use the class as follows:

complexNumber z(2,3);

cout<<’’z = ’’;z.print(); // z = 2+3i

complexNumber w;

cout<<’’w = ’’;w.print(); // w = 0+0i

w = z;

cout<<’’w = ’’;w.print(); // w = 2+3i

w.x = 1;

1



cout<<’’w = ’’;w.print(); // w = 1+3i

z.add(w);

cout<<’’z = ’’;z.print(); // z = 3+6i

z.multiply(w); // z = (3+6i)(1+3i)

cout<<’’z = ’’;z.print(); // z = -15 + 15 i

cout<< w.norm(); // 3.1623

Use the above program to test your class.
(Note: We will study later a better implementation of this class)

Problem 2 (point and rectangle classes)

a) Design a class point that defines a planar point as an Abstract Data Type.

Include the member functions:

• Non-default constructor which allows the user to initialize a planar point by specifying its x

and y coordinates

• Default constructor

• Scale function
void point :: scale(double a)

This function is supposed to scale the coordinates of the point by a, i.e., multiply each by the
real number a.

• Add function
void point :: add(point q)

If p and q are of type point. The function p.add(q) should modify p in such a way that p.x is
assigned p.x + q.x, and p.y is assigned p.y + q.y.

(Note: We will study later a better implementation of this class.)

b) Modify the selectionSort function so that, instead of taking an array of integers, it takes an array
of points and sorts them in order of increasing x-coordinates.

Call it xSelectionSortPoints. Its prototype is thus

void xSelectionSortPoints(point A[], int n)

c) Based on the class point, design a class rectangle that defines a rectangle as an Abstract Data
Type.

In this problem, by a rectangle we mean a rectangle whose edges are either vertical or horizontal
(i.e., we do not deal with rotated rectangles). Thus to specify a rectangle we only need to specify
its lower left corner point and its upper right corner point.

Include the member functions:

• Non-default constructors which allows the user to initialize a rectangle by specifying its 2
defining corner points.

• Default constructor

• Area member function
double rectangle :: area()

• Scale member function
void rectangle :: scale(double a)

This function is supposed to scale each of the corner points of the rectangle by a.

2



• Translate member function

void rectangle :: translate(point q)

This function is supposed to translate the rectangle by the vector q, i.e., add q to both corner
points.

• The membership function

bool rectangle :: containsPoint(point p)

This function is supposed to check if a given point p is inside the rectangle.

• The pointSetIntersect function

void rectangle :: pointSetIntersect(point A[], int n, point B[], int &m)

This function is supposed to store in the array B all the points in A[0 . . . n − 1] which are
inside the rectangle. It is supposed also to set m to the number of points in A[0 . . . n − 1]
which are inside the rectangle. Assume that memory is allocated for the array B before calling
the function.

Write a program to test your classes and functions.

Problem 3 (dynamic array class).
Design a class myDynamicArray that defines a Dynamic Array of integers as an Abstract Data Type

(ADT).
Include the member functions:

• Non-default constructor which allows the user to dynamically allocate the needed space

• Destructor which is supposed to free the allocated space if any

• Sequential search member function which takes as input an integer to search for in the array and
returns the index if found and −1 otherwise

• print member function

• insertionSort member function which is supposed to sort the array using the insertion sort algo-
rithm.

• void myDynamicArray :: copy(myDynamicArray &)

• void myDynamicArray :: concatenate(myDynamicArray & B)
This function is supposed to update the content of the dynamic array by including the elements in
B. (Note: here you have to copy to a temporary place, delete, allocate, fill, and finally delete the
temporary array).

Write a program to test your class.
(Note: This is not a complete implementation. For instance, you cannot pass an instance of this class

by value to a function (try it). We will fix this issue in the next PA ... copy constructor.)

3


