
EECE 230 Introduction to Programming,

Sections 3,4, and 12

Programming Assignment 10

Tuesday Dec 12, 2012

• This programming assignment consists of 4 problems.

• Never due, but material included on the final exam.

• Related material: classes, pointers and classes, templates, and 2-dimensional
arrays.

• Lab structure and regulations:

? The 3 hours Lab session is on Tuesdays in Lab rooms 1,2 and 5 from
2:00 pm to 5:00 pm. It consists of three parts:

- Occasional Solving Session (not graded but attendance manda-
tory)

- Programming Assignment (graded)
- Occasional graded weekly quiz

? You are supposed to submit your own work. Cheating will not be
tolerated and will be dealt with severely: zero grades on the pro-
gramming assignments, disciplinary committee, Dean’s warning.

? Lab attendance is mandatory. Violating this rule can lead to a failing
grade.

Problem 1. Quadratic polynomials class
In this problem, we are interested in quadratic polynomials, i.e., polynomials

of degree 2.
A quadratic polynomial p(x) on the variable x is of the form p(x) = ax2 +

bx + c, where a, b, c are real numbers. Thus p is uniquely specified by the three
parameters a, b, and c.

Design a class quadraticPolynomial that defines a quadratic polynomial as
an Abstract Data Type.

Include the member functions:

1

• a constructor which takes the values of a, b, and c as input parameters.

• default constructor which sets a = b = c = 0.

• evaluate function which given a real number v, returns the value of the
polynomial on x = v, i.e., av2 + bv + c.

• print function which prints the parameters of the polynomial in the fol-
lowing format:

a*x^2 + b*x + c

• realRoots function which finds the real roots of the polynomial. This
function returns an integers and it takes two reference parameters x1 and
x2 as explained below.

Recall that the roots of p(x) = ax2+bx+c are the solutions of the equation
p(x) = 0. This equation has real solutions if and only if ∆ = b2−4ac ≥ 0.

If a 6= 0 and ∆ ≥ 0, the roots are given by −b±
√

∆
2a . In this cases the

function realRoots returns 2 and it sets the reference parameters x1 and
x2 to the values of the two roots (we set them to the same value if ∆ = 0).

If a 6= 0 and ∆ < 0, realRoots returns 0.

If a = 0 and b 6= 0, the polynomial has only one root −c/b. In this cases
the realRoots returns 1 and it sets the reference parameter x1 to the single
root of the polynomial.

If both a and b are zero, then the equation has either no solution if c 6= 0
or infinitely many solutions if c = 0. In the first case realRoots returns 0,
and in the second it returns 999.

• isSquare function which returns TRUE if the polynomial is the square of
a degree-1 polynomial and FALSE otherwise.

• derivative function which returns the derivative of the polynomial, i.e.,
the polynomial given by 2ax + b = 0x2 + 2ax + b.

Include also the (non-member) function:

• sum which takes two quadratic polynomials and returns their summation.

Note that if p(x) = ax2 + bx + c and q(x) = a′x2 + b′x + c′, then their
summation is the polynomial given by (a + a′)x2 + (b + b′)x + (c + c′).

Test your class using the following program:

int main()
{

quadraticPolynomial p(1,5,3),q(1,2,1), r;
cout<<"p: ";p.print();
cout<<"q: ";q.print();

2

cout<<"r: ";r.print();
cout<<"p(2)="<<p.evaluate(2)<<endl;
r = sum(p,q);
cout<<"p+q: ";r.print();
r = p.derivative();
cout<<"derivative r of p: ";r.print();
double x1,x2;
if(p.realRoots(x1,x2)==2) cout<<"roots of p : "<<x1<<","<<x2<<endl;
if(q.realRoots(x1,x2)==2) cout<<"roots of q : "<<x1<<","<<x2<<endl;
if(r.realRoots(x1,x2)==1) cout<<"root of r : "<<x1<<endl;
if(q.isSquare()) cout<<"q is a square";
else cout<<"q is not a square";
cout<<endl;
if(p.isSquare()) cout<<"p is a square";
else cout<<"p is not a square";
cout<<endl;
return 0;

}

You should get

p: 1*x^2 + 5*x + 3
q: 1*x^2 + 2*x + 1
r: 0*x^2 + 0*x + 0
p(2)=17
p+q: 2*x^2 + 7*x + 4
derivative r of p: 0*x^2 + 2*x + 5
roots of p : -0.697224,-4.30278
roots of q : -1,-1
root of r : -2.5
q is a square
p is not a square

Problem 2. myDynamicArray class revisited: Copy constructor and
the Overload the assignment operator

Recall the class myDynamicArray [Programming Assignment 9, Problem 3].
Modify it as follows:

• Make A and size private

• Introduce interface public member functions to manipulate A and size:

i. get function to read the i’th entry of A

ii. set function to set the i’th entry of A

iii. getSize function to read size

3

• Add a copy constructor

myDynamicArray::myDynamicArray(const myDynamicArray & other);

Note that the copy constructor is essential to: 1) pass instances of this
class by value to functions and 2) enable functions to return instances of
this class.

• Overload the assignment operator

const myDynamicArray& myDynamicArray::operator=(const myDynamicArray & other);

Write a program to test your class.

Problem 3. Templates
This problem is a based on the code of various sorting functions we did in

class or in previous Programming Assignments.
Write the template versions of the insertion sort, selection sort, merge sort,

and randomized quick sort functions (parametrize the array type). Put the
functions (with their implementations) in a header file called “mySortingAlgo-
rithms.h”. Add also the template version of the array print function to the
header file.

All what you have to do is copy, paste, find, and replace....
Write a test program which includes the sorting algorithms header file and

sorts arrays of various types (e.g., int and double) using each of the above
algorithms.

Problem 4 Magic Square
Do Programming Exercise 9.13 [Malik, page 547] (page 494 in the second

edition, page 547 in the third edition).
The problem statement is below.

4

