
EECE 230 Introduction to Programming, Sections 3 and 4

Final Exam

January 20, 2011

• The duration of this exam is 3 hours.

• It consists of 4 problems.

• The exam is open book. You can use also all the material on Moodle: lecture notes, programming
assignments, and solutions, etc. You are NOT allowed to use the web (imail included). You are
not allowed to use USB’s or files previously stored in your account.

• If you violate the above rules or if you communicate with a person other than the exam proc-
tors during the exam, you will immediately get zero and you will be referred to the appropriate
disciplinary committee.

• Active cell phones and any other unauthorized electronic devices are absolutely not allowed in the
exam rooms. They should be turned off and put away.

• Plan your time wisely. Do not spend too much time on any one problem. Read through all of them
first and attack them in the order that allows you to make the most progress.

• Submit your solutions each part in a separate file as indicated in the booklet. Include your name
and ID number in each file. Submit the files online in a single zip file called
yourLastName.yourF irstName.zip.

• Good luck!

1

Problem 1 (20 points). Consecutive pair sum
Write a program which takes as input: 1) a target number t, and 2) a list of integers whose end is

indicated by the sentinel −999. Your program is supposed to find the number of consecutive pairs of
numbers whose sum is equal to the target t. That is, if the list is a1, a2, . . . , am,−999, then your program
should print the number of i’s such that ai + ai+1 = t.

For example, if the target is 2 and the input list is

1 1 3 4 10 -8 10 100 15 -98 -999

then the program output should be 3 since 1 + 1 = 2, 10− 8 = 2, and −8 + 10 = 2. Note that 100 − 98
does not count since 100 and −98 are not consecutive.

Submit your code in a file called Prob1.cpp. Include your name and ID number in the file.

Problem 2 (25 points). Equilateral triangles
Recall the structure point we did in class:

struct point

{

double x;

double y;

};

a) (5 points) Write the function dist which takes as input two points p and q and returns the Euclidean
distance between p and q.

Note that if (x1, y1) and (x2, y2) are two points, the Euclidean distance between them is given by
√

(x1 − x2)2 + (y1 − y2)2.

b) (5 points) Three points p, q, and r determine a triangle. We call the triangle equilateral if
dist(p, q) = dist(p, r) = dist(q, r).

Write a boolean function isEquilateral which takes as input three points p, q, and r and checks
whether or not the corresponding triangle is equilateral.

c) (15 points) Write a function, which given a array of points A[0 . . . n − 1] and its size n, checks
whether or not the array contains three distinct points which form an equilateral triangle. That
is, your function should check whether or not there are indices i, j, and k such that the points
A[i], A[j], and A[k] form an equilateral triangle.

Call your function containsEquilateral.

Write a program to test your functions.
Submit your code in a file called Prob2.cpp. Include your name and ID number in the file.

Problem 3 (25 points). Circle class
Recall the structure point we did in class:

struct point

{

double x;

double y;

};

2

Using the structure point, design the class circle that defines a circle as an Abstract Data Type.
In addition to the member variable center which is of type point, include the member variable radius

(which is a real number). Make both center and radius public.
Include the following functions:

• default constructor

• non-default constructor which takes 3 double-values: the radius and the x and y coordinates of
center

• print member function which displays the radius and the x and y coordinates of center

• area member function which returns the area of the circle (i.e., π ∗ radius2)

• translate member function which takes as input argument a point p and translates the center of
the circle by p

• contains member function which takes as input argument a point p and checks whether or not p is
inside the circle

Write a program to test all the above member functions.
Submit your code in a file called Prob3.cpp. Include your name and ID number in the file.

Problem 4 (30 points +10 bonus points). Longest Common Subsequence (LCS) problem
A subsequence of a string S[0, . . . , N − 1] (with proper null termination, i.e., S[N] =′ \0′) is any

sequence S[i1], S[i2], . . . , S[it], where 0 ≤ i1 < i2 < . . . < it ≤ N − 1.
Example: “art” is a subsequence of “algorithms”. However “rat” is not subsequence of “algorithms”

because we have to respect the order of characters. Thus, unlike substrings, subsequences need not consist
of consecutive characters

The Longest Common Subsequence (LCS) problem: Given two strings X [0 . . .m−1] and Y [0 . . . n−1],
find the length of the longest subsequence common to both.

The length of the LCS is a measure of similarity between X and Y . It is large for “similar” strings.
This has application in comparing files or DNAs.

Example:

X: A B C B D A B

Y: B D C A B A

We have BCBA is a LCS of X and Y , BDA is common subsequence but not a LCS (BCBA is longer),
BCAB is another LCS. The length of the longest common subsequence is 4.

a) (20 points)(*) Write a function for the LCS problem:

int LCS(char *X,char *Y);

Given X and Y , LCS is supposed to return the length of the LCS of X and Y . Any correct function
is worth full grade. Efficiency does not matter in this part.

(Hint: recursion).

b) (10 points+10 bonus points)(**) Write an efficient function for the LCS problem:

int fastLCS(char *X,char *Y);

The running time of your function should not be exponential in the length of X or Y .

(Hint: Modify (a) ... avoid solving the same subproblem more than once).

Write a program to test your functions.
Submit your code in a file called Prob4.cpp. Include your name and ID number in the file.

3

