
EECE 230 Introduction to Programming, Sections 3 and 4

Final Exam

January 17, 2012

• The duration of this exam is 3 hours.

• It consists of 4 problems.

• The exam is open moodle. You can use all the material on Moodle: lecture notes, programming
assignments, and solutions, etc. You are NOT allowed to use the web (imail included). You are
not allowed to use USB’s or files previously stored in your account.

• If you violate the above rules or if you communicate with a person other than the exam proctors
during the exam, you will immediately get zero and you will be referred to a disciplinary committee.

• Active cell phones and any other unauthorized electronic devices are absolutely not allowed in the
exam rooms. They should be turned off and put away.

• Plan your time wisely. Do not spend too much time on any one problem. Read through all of them
first and attack them in the order that allows you to make the most progress.

• Submit your solutions each part in a separate file as indicated in the booklet. Include your name
and ID number in each file. Submit the files online in a single zip file called abcMN.zip, where
abcMN is your AUB user i.d., e.g., abc01.zip.

• Good luck!

1



Problem 1 (30 points + 10 bonus points). Parenthesis check

a) (12 points) Check if the numbers of left and right parenthesis are equal. Write a function

bool parenthesisA(char *s)

which given a C-string s checks if it has the same number of left “(” and right “)” parenthesis.

Examples:

– Each of the following strings have the same number of of left and right parenthesis: “a)(b”,
“a(x)b”, “a(x)b)(”

– None of the following strings have the same number of of left and right parenthesis: “a))b”,
“a(x(b”, “a(x)b))”

b) (13 points) Check if they march. Write a function

bool parenthesisB(char *s)

which given a C-string s checks if the “(” left and right “)” parenthesis match. Note that if there
is match then the number of left parenthesis must be equal to the number of right parenthesis but
the converse is not true.

Examples:

– The parenthesis in each of the following strings match: “a(x)b”, “a((x))(b)”, “((()()))()”.

– The parenthesis in each of the following strings do not match: “a)(b”, “a(x)b)(”, “a))b”.

c) (5 points + 10 bonus points) Parenthesis and braces. Write a function

bool parenthesisAndBraces(char *s)

which given a C-string s checks if the left and right parenthesis and the left and right braces match.

Examples:

– We have a match in each of the following strings: “a(aa)aa”, “aa(b(cd))e[ab]”,
“([aa(b)c[(aaaaa)]r(d)])”

– We don’t have a match in any of the following strings:” “a([b)]”, or “((aab)[d”, “e[()(])”.

Write a program to test your functions. Use the above examples.
Submit this problem in a file called Prob1.cpp. Include your name and ID number in the file.

Problem 2 (20 points). Check if an integer appears three times
Write a program which takes as input a list of integers whose end is indicated by the sentinel −999.

Your program is supposed to check whether or not the list contains a number which appears at least
three times.

Examples:

• If the input list is

1 1 7 4 10 -8 7 100 7 7 -98 -999

then the answer is YES since the number 7 appears 4 times.

2



• If the input list is

1 1 9 4 10 -8 7 100 7 9 -98 -999

then the answer is NO.

Your program is supposed to give a YES/NO answer only.
Faster programs are worth more points. Any correct solution of the problem is worth 15/20 points.
Submit your code in a file called Prob2.cpp. Include your name and ID number in the file.

Problem 3 (35 points + 10 bonus points). Classes: interval class

a) (30 points) If a and b are real numbers, the interval [a, b] is the set of real numbers x such that
a ≤ x ≤ b. We call a the lower bound of the interval [a, b] and b its upper bound. Note that [a, b] is
nonempty only when a ≤ b. If a > b, the interval [a, b] is called the empty interval.

Design a class interval that defines a interval as an Abstract Data Type (the member variables are
a and b).

Include the member functions:

• Constructors: default (initialize to an empty-interval), and non-default.

• The print member function. This function is supposed to print [a, b] if the interval is nonempty
and “empty interval” if it is empty.

• The membership function contains, which given a real number x, checks if x is inside the
interval.

• The function numberOfElements, which given an array A of real numbers and its size, returns
the the number of real numbers in A inside the interval.

Your are required to implement numberOfElements using the function contains.

• The function intersectWith which takes as input argument another interval by reference. It
is supposed to return an interval equal to the intersection of the two intervals.

For instance, if I = [1.5, 3], J = [2.1, 4], and K is a third interval. Then K = I.intersectWith(J)
is supposed to to set K to [2.1, 3].

Write a program to test your class. You are asked to test all the member functions of the class.

b) (5 points + 10 bonus points) Write the (non-member) function

void findUnion(interval A[], int n, interval B[], int & m)

The function findUnion is supposed to to store in the array B a sequence of non-overlapping
intervals whose union is equal to the union of the intervals in A. It is supposed to set m to the
number of the intervals in B. Assume that memory is allocated to B before calling the function.

For instance, say that A consists of the intervals [3.5, 4.5], [19, 22.3], [6, 9], [1, 4], [5.5, 7.6], and [2, 3].

Then the function findUnion is supposed to store [1, 4.5], [5.5, 9], [19, 22.3] in B and set m to 3.

Test your function on the above example.

Submit your solution of this problem in a file called Prob3.cpp. Include your name and ID in number
the file.

Problem 4 (15 points). Recursive Sequential Search
Recall the search problem:

3



Searching problem. Given an array A[0 . . . n − 1] of integers and an integer x , check if x is an
element of A and if so find its index. More specifically, if x is an element of A return an index i

such that A[i] = x (any such i is ok), else return −1.

We solved this problem in class using the sequential search algorithm. Your asked in this problem to
write a recursive version of the sequential search algorithm. Call it recursiveSequentialSearch. The use
of for or while loops is strictly prohibited in the recursiveSequentialearch.

Note that recursive binary search is not applicable to this problem since A is not necessarily sorted.
Write a program to test your function.
Submit your code in a file called Prob4.cpp. Include your name and ID number in the file.

4


