
EECE 230 Introduction to Programming, Sections 3 and 4

Final Exam

January 26, 2010

• The duration of this exam is 3 hours.

• It consists of 4 problems.

• The exam is open book. You can use also all the material on Moodle: lecture notes, programming
assignments, and solutions, etc. You are NOT allowed to use the web (imail included). You are
not allowed to use USB’s or files previously stored in your account.

• If you violate the above rules or if you communicate with a person other than the exam proc-
tors during the exam, you will immediately get zero and you will be referred to the appropriate
disciplinary committee.

• Active cell phones and any other unauthorized electronic devices are absolutely not allowed in the
exam rooms. They should be turned off and put away.

• Plan your time wisely. Do not spend too much time on any one problem. Read through all of them
first and attack them in the order that allows you to make the most progress.

• Submit your solutions each part in a separate file as indicated in the booklet. Include your name
and ID number in each file. Submit the files online in a single zip file called
yourLastName.yourF irstName.zip.

• Good luck!

1



Problem 1 (20 points). Print even followed by odd
Write a program which, given a list of integers whose end is indicated by the sentinel −999, prints

the even numbers in the input list followed by the odd numbers in the list.
For example, if the input list is

1 10 2 3 -5 4 8 15 -3 -2 12 11 -999

then the program output should be

Even numbers: 10 2 4 8 -2 12
Odd numbers: 1 3 -5 15 -3 11

Submit your code in a file called Prob1.cpp. Include your name and ID number in the file.

Problem 2 (25 points). Product
Write a function product which, given an array A[0 . . . n − 1] of integers, checks whether or not the

array A contains two integers whose product is also present in the array A. The prototype of product is

bool product(int A[], int n);

The function returns TRUE if there exist induces i, j, and k, where 0 ≤ i, j, k ≤ n − 1, such that
A[i] × A[j] = A[k]. Otherwise, the function returns FALSE.

Examples:

• If A = 〈7, 10, 11, 2,−16, 5, 6, 13〉, then the answer is TRUE since 2 × 5 = 10 is present in A.

• If A = 〈3, 2, 5, 8〉, then the answer is FALSE since none of the following products are present in A:
3× 3 = 9, 3× 2 = 6, 3× 5 = 15, 3× 8 = 24, 2× 2 = 4, 2× 5 = 10, 2× 8 = 16, 5× 5 = 25, 5× 8 = 40,
8 × 8 = 64.

Write a program to test your function.
A correct solution of this problem is worth at least 15 points. Faster solutions are worth more points.

(Hint: The fast implementation uses binary search).
Submit your code in a file called Prob2.cpp. Include your name and ID number in the file.

Problem 3 (15 points). Subset Sum revisited
Recall the Subset Sum problem in Quiz 1 [available on moodle]. In this problem you are asked to

generalize from 3 numbers (8 in Part (b)) to an arbitrary number n of numbers specified by the user.
That is, write a program which prompts the user to enter an integer n, a list of n numbers, and a target
number t. You program is supposed to check whether or not the input list of numbers contains a subset
whose sum is equal to the target number t. If such a subset exists, your are not asked to print it. Your
program is only supposed to print “Subset found”. Otherwise, it should print “Subset not found”. That
is, we are after a YES/NO answer.

The solution of Part (b) in Quiz I [available on moodle] uses 8 nested loops. It cannot be generalized
to solve the general n case since n is specified by the user and it is not possible to use n nested loops when
n is not a constant. You are asked to solve this problem recursively. In fact, you are NOT allowed
to use for or while loops in your recursive function. The only loop you need in the program is the loop
which stores the input list of number in an array.

You don’t have to worry about speed in this problem. Any correct solution is worth 15 points.
Submit your code in a file called Prob3.cpp. Include your name and ID number in the file.

2



Problem 4 (40 points). Classes: quadratic polynomials
In this problem, we are interested in quadratic polynomials, i.e., polynomials of degree 2. (You do

NOT need the code Part (b) of Problem 3 of Programming Assignment 10, which deals with polynomials
of arbitrary degree n and uses arrays to implement them. The degree-2 case is much simpler. You don’t
need arrays in this problem and you are not allowed to use them (hence you cannot use the code of the
solution of Part (b) of Problem 3 of PA 10)).

A quadratic polynomial p(x) on the variable x is of the form p(x) = ax2 + bx + c, where a, b, c are
reals numbers. Thus p is uniquely specified by the three parameters a, b, and c.

Design a class quadraticPolynomial that defines a quadratic polynomial as an Abstract Data Type.
Include the member functions:

• a constructor which takes the values of a, b, and c as input parameters.

• default constructor which sets a = b = c = 0.

• evaluate function which given a real number v, returns the value of the polynomial on x = v, i.e.,
av2 + bv + c.

• print function which prints the parameters of the polynomial in the following format:

a*x^2 + b*x + c

• realRoots function which finds the real roots of the polynomial. This function returns an integers
and it takes two reference parameters x1 and x2 as explained below.

Recall that the roots of p(x) = ax2+bx+c are the solutions of the equation p(x) = 0. This equation
has real solutions if and only if Δ = b2 − 4ac ≥ 0.

If a �= 0 and Δ ≥ 0, the roots are given by −b±√
Δ

2a . In this cases the function realRoots returns 2
and it sets the reference parameters x1 and x2 to the values of the two roots (we set them to the
same value if Δ = 0).

If a �= 0 and Δ < 0, realRoots returns 0.

If a = 0 and b �= 0, the polynomial has only one root −c/b. In this cases the realRoots returns 1
and it sets the reference parameter x1 to the single root of the polynomial.

If both a and b are zero, then the equation has either no solution if c �= 0 or infinitely many solutions
if c = 0. In the first case realRoots returns 0, and in the second it returns 999.

• isSquare function which returns TRUE if the polynomial is the square of a degree-1 polynomial
and FALSE otherwise.

• derivative function which returns the derivative of the polynomial, i.e., the polynomial given by
2ax + b = 0x2 + 2ax + b.

• overload the binary operator + as a member function to perform the addition + of two polynomials,
which is defined as follows. If p(x) = ax2 + bx + c and q(x) = a′x2 + b′x + c′, then p(x) + q(x) is
the polynomial given by (a + a′)x2 + (b + b′)x + (c + c′).

Test your class using the following program:

int main()
{

quadraticPolynomial p(1,5,3),q(1,2,1), r;
cout<<"p: ";p.print();
cout<<"q: ";q.print();
cout<<"r: ";r.print();
cout<<"p(2)="<<p.evaluate(2)<<endl;
r = p+q;
cout<<"p+q: ";r.print();
r = p.derivative();

3



cout<<"derivative r of p: ";r.print();
double x1,x2;
if(p.realRoots(x1,x2)==2) cout<<"roots of p : "<<x1<<","<<x2<<endl;
if(q.realRoots(x1,x2)==2) cout<<"roots of q : "<<x1<<","<<x2<<endl;
if(r.realRoots(x1,x2)==1) cout<<"root of r : "<<x1<<endl;
if(q.isSquare()) cout<<"q is a square";
else cout<<"q is not a square";
cout<<endl;
if(p.isSquare()) cout<<"p is a square";
else cout<<"p is not a square";
cout<<endl;
return 0;

}

You should get

p: 1*x^2 + 5*x + 3
q: 1*x^2 + 2*x + 1
r: 0*x^2 + 0*x + 0
p(2)=17
p+q: 2*x^2 + 7*x + 4
derivative r of p: 0*x^2 + 2*x + 5
roots of p : -0.697224,-4.30278
roots of q : -1,-1
root of r : -2.5
q is a square
p is not a square

Submit your code in a file called Prob4.cpp. Include your name and ID number in the file.

4


