
EECE 230 Introduction to Programming, Sections 7,8,10

Final Exam

Feb 4, 2009

• The duration of this exam is 3 hours.

• It consists of 4 problems.

• The exam is open book. You can use also all the material on Moodle: lecture notes, programming
assignments, and solutions, etc. You are NOT allowed to use the web (imail included). You are
not allowed to use USB’s or files previously stored in your account.

• If you violate the above rules or if you communicate with a person other than the exam proc-
tors during the exam, you will immediately get zero and you will be referred to the appropriate
disciplinary committee.

• Active cell phones and any other unauthorized electronic devices are absolutely not allowed in the
exam rooms. They should be turned off and put away.

• Plan your time wisely. Do not spend too much time on any one problem. Read through all of them
first and attack them in the order that allows you to make the most progress.

• Submit your solutions each part in a separate file as indicated in the booklet. Include your name
and ID number in each file. Submit the files online in a single zip file called
yourLastName.yourF irstName.zip.

• Good luck!

1

Problem 1 (25 points). Series
Write a program, which given a nonnegative integer n and a real number x, prints the value of the

series:

fn(x)
def
= 1 −

x

2
+

x2

3
−

x3

4
+ . . . + (−1)n

xn

n + 1
.

Test your program on the following examples:
x n fn(x)

any 0 1
0.0 any (≥ 0) 1
2.0 3 -0.666
3.3 6 136.984

You are not allowed to use the cmath library and in particular you are not allowed to use the pow

function.
Submit your code in a file called Prob1.cpp. Include your name and ID number in the file.

Problem 2 (35 points). Subset

a) (25 points) Implement the function

bool subset(int *A, int m,int *B, int n)

which, given a length-m array A of integers and a length-n array B of integers, checks if each
element of B is present in A (not necessarily with the same number of number of occurrences or in
the same order).

For instance, if A = 〈2, 8, 3, 7, 5, 5〉 and B = 〈7, 2, 3, 7, 5, 2, 5, 2〉, then each element of B is present
in A.

This is not true however for A = 〈2, 8, 3, 7, 5, 5〉 and B = 〈7, 2, 3, 7, 6, 2, 5, 2〉 since 6 is not an element
of A.

In this part you are asked to implement the function using two nested loops.

b) (10 points) Write a more efficient implementation of the function in part (a). Instead of using two
nested loops, use randomized quick sort [Problem 1 of PA 8] and binary search (you can download
the code of those functions from moodle). Call your function fastSubset.

Write a program to test your functions.
Submit your code in a file called Prob2.cpp. Include your name and ID number in the file.

Problem 3 (10 points + 5 bonus points). Recursive partition enumerator
If n is a positive integer, a partition of n is an sequence of strictly positive integers 〈a1, a2, . . . , ak〉

sorted in non increasing order whose sum is equal to n, i.e., a1 ≥ a2 ≥ . . . ≥ ak ≥ 1 and a1+a2+. . .+ak =
n.

For instance 〈3, 2, 1, 1〉 is a partition of 7. Another partition of 7 is 〈3, 3, 1〉.
Write a recursive function, which given an positive integer n, prints all partitions of n.
Examples:

• For n = 1, the function should print

1

2

• For n = 2, the function should print

2

1 1

• For n = 3, the function should print

3

2 1

1 1 1

• For n = 4, the function should print

4

3 1

2 2

2 1 1

1 1 1 1

• For n = 7, the function should print

7

6 1

5 2

5 1 1

4 3

4 2 1

4 1 1 1

3 3 1

3 2 2

3 2 1 1

3 1 1 1 1

2 2 2 1

2 2 1 1 1

2 1 1 1 1 1

1 1 1 1 1 1 1

Note that in addition to the integer n, the recursive function needs other input parameters. Look at the
string enumerator problem in PA 8 (Part (a) of Problem 3)

Your function should not take much more time than the output size. That is you are expected to
avoid recursive branches which do not lead to valid partitions.

Submit your code in a file called Prob3.cpp. Include your name and ID number in the file.

Problem 4 (30 points). Classes: 2 × 2 matrices

In this problem we are interested in 2 × 2 matrices with real entries. A 2 × 2 matrix

(

a b

c d

)

is

specified by the four real numbers a, b, c, d.

If

(

a b

c d

)

and

(

e f

g h

)

are 2 × 2 matrices, their sum and product are define as follows

(

a b

c d

)

+

(

e f

g h

)

def
=

(

a + e b + f

c + g d + h

)

(

a b

c d

)

∗

(

e f

g h

)

def
=

(

ae + bg af + bh

ce + dg cf + dh

)

.

3

If M =

(

a b

c d

)

is a 2 × 2 matrix and v =

(

x

y

)

is a 2 × 1 vector, the product of M and v is the

2 × 1 vector given by
(

a b

c d

) (

x

y

)

def
=

(

ax + by

cx + dy

)

.

Finally the determinant of a matrix is the real number given by

det

(

a b

c d

)

def
= ad − bc.

Design a class matrix22 that defines a 2 × 2 matrix as an Abstract Data Type.
Include the member functions:

• a constructor which takes the four defining entries of the matrix as an input parameters

• default constructor which sets all the four entries of the matrix to zeros.

• print function which prints the matrix in the following format:

a b

c d

• overload the binary operator + as a member function to perform the addition of two matrices as
as defined above.

• overload the binary operator ∗ as a member function to perform the multiplication of two matrices
as as defined above.

• overload the binary operator ∗ as a member function to perform the multiplication of a matrix and
a vector as defined above. Use the simple vector class vector2 given in the test program below.

• determinant member function det.

Note the class matrix22 is much simpler than the general case of m × n matrices we did in class
(the matrix class). You don’t need the implementation of that class in this problem. You are asked to
implement matrix22 from scratch.

Test your class using the following program:

class vector2

{

public:

double x;

double y;

vector2() {x = 0;y=0;}

vector2(double xValue,double yValue) {x = xValue;y=yValue;}

void print() {cout<<endl<<" "<<x<<endl<<" "<<y<<endl;}

};

// matrix22 class definition

....

int main()

{

matrix22 M(1,2,3,4), N;

cout<< "M:";M.print();

cout<< "N:";N.print();

cout<<"det(M) ="<<M.det();

cout<<endl;

4

N = M+M;

cout<<"N:";N.print();

M = M*N;

cout<<"M:";M.print();

vector2 v(1,2);

cout<< "v:";v.print();

vector2 w = M*v;

cout<<"w:";w.print();

cout<<endl;

return 0;

}

// implementations of the functions of matrix22

....

You should get

M:

1 2

3 4

N:

0 0

0 0

det(M) =-2

N:

2 4

6 8

M:

14 20

30 44

v:

1

2

w:

54

118

Submit your code in a file called Prob4.cpp. Include your name and ID number in the file.

5

