
EECE 230 Introduction to Programming, Sections 3 and 4

Quiz II

Dec 20, 2011

• The duration of this exam is 2 hours and 45 minutes.

• It consists of 4 problems. The total number of points is 120.

• The exam is open moodle. You can use all the material on Moodle: lecture notes, programming
assignments, and solutions, etc. You are NOT allowed to use the web (imail included). You are
not allowed to use USB’s or files previously stored in your account.

• If you violate the above rules or if you communicate with a person other than the exam proc-
tors during the exam, you will immediately get zero and you will be referred to the appropriate
disciplinary committee.

• Active cell phones and any other unauthorized electronic devices are absolutely not allowed in the
exam rooms. They should be turned off and put away.

• Plan your time wisely. Do not spend too much time on any one problem. Read through all of them
first and attack them in the order that allows you to make the most progress.

• Submit your solutions each part in a separate file as indicated in the booklet. Include your name
and ID number in each file. Submit the files online in a single zip file called abcMN.zip, where
abcMN is your AUB user i.d., e.g., abc01.zip.

• Good luck!

1

Problem 1 (20 points). Files
Write a program which creates a new file called “square.txt”, prompts the user to an enter an integer

n, and stores in “square.txt” an n × n square of the form:

• If n = 1

*

• If n = 2

**

**

• If n = 3

* *

• If n = 4

* *

* *

• ...

If the user input n is negative or zero, your program is supposed to display an error message “n less than
or equal to zero!” and keep the file “square.txt” empty.

Submit your code in a file called Prob1.cpp including your name and ID number.

Problem 2 (50 points+10 bonus points). Duplicated Strings

a) (20 points) Check if duplicated. Write a function checkIfDuplicated, which given a C-string
s as input argument, checks if s is the concatenation of two copies of the same string. Examples:

– “abcabc” is the concatenation of two copies of the same string (“abc”).

– “zuc1zuc1” is the concatenation of two copies of the same string (“zuc1”).

– “qq” is the concatenation of two copies of the same string (“q”).

– “abcab” is NOT the concatenation of two copies of the same string.

– “abab2” is NOT the concatenation of two copies of the same string.

– “x” is NOT the concatenation of two copies of the same string.

Your function is supposed to return a boolean value (ture if the answer is YES and false if the
answer is NO). Use the following test program:

2

... checkIfDuplicated prototype

int main()

{

char s[100];

cout<<"Enter string:"<<endl;

cin>>s;

... call the function checkIfDuplicatded on s and depending on

... its return value display "YES duplicated" or "NO not duplicated"

cout<<endl;

return 0;

}

... checkIfDuplicated function body

For simplicity, assume that the user input does not contain white spaces. Test your function on the
above examples.

Submit your code in a file called Prob2a.cpp including your name and ID number.

b) (30 points + 10 bonus points) Longest duplicated substring.

Write a function which given a C-string s, finds the longest duplicated substring of s, i.e., the
longest substring of s which appears twice in s (without overlapping with itself).

Examples’:

1. If s =′′ xyzabcdxyabcd12′′, then the longest duplicated substring is ′′abcd′′ as it appears twice
without overlapping with itself and it is the longest substring of s with this property.

2. If s =′′ aaaaa′′, then the longest duplicated substring is ′′aa′′. It appears twice without
overlapping with itself: “aaaaa′′ and “aaaaa′′ (in bold). Note that “aaaa′′ is not a valid
answer since the substrings “aaaaa′′ and “aaaaa′′ (in bold) overlap.

3. If s =′′ 123xyxy312u3′′, then a longest duplicated substring of ′′12′′. Another valid answer is
′′xy′′ since it also appears twice and it has the same length as ′′12′′.

4. If s =′′ abcxyxa′′, then the longest duplicated substring is ′′x′′.

5. If s =′′ xyz′′′, then a longest duplicated substring is the empty string.

Note that the longest duplicated substring is not necessarily unique (e.g., Example 3 above). We
are satisfied with any of the longest ones.

Use the following test program and try the above examples.

void longestDuplicatedSubstring(char s[],char duplicated[]);

int main()

{

char s[100];

cout<<"Enter string:"<<endl;

cin>>s;

char duplicated[50];

longestDuplicatedSubstring(s,duplicated);

cout<<"Longest duplicated substring:"<< duplicated<<endl;

return 0;

}

void longestDuplicatedSubstring(char s[], char duplicated[])

{

.....

}

Any correct solution is worth 20/30 points. If you solve without triply-nested loops, you get 40/30
points

Submit your code in a file called Prob2b.cpp including your name and ID number.

3

Problem 3 (30 points). Recursive odd numbers counter

a) (10 points) Simple for loop.

Write a function oddNumbersCounter, which given an array A of integers and its length n, returns
the number of odd integers in A.

Examples:

– If A[] = {10, 5, 12, 1, 3, 4, 8, 11}, the function is supposed to return 4 (since A contains 4 odd
numbers: 5, 1, 3, 11).

– If A[] = {12, 4, 2, 20, 6}, the function is supposed to return 0 (since all the numbers in A are
even).

– If A[] = {11, 3, 1, 19, 5}, the function is supposed to return 5 (since all the numbers in A are
odd).

Use the following test program which is based on the above examples.

...oddNumbersCounter function prototype

int main()

{

int A[] = {10,5,12,1,3,4,8,11};

...call oddNumbersCounter on array A and display its answer

int B[] = {12,4,2,20,6};

...call oddNumbersCounter on array B and display its answer

int C[] = {11,3,1,19,5};

...call oddNumbersCounter on array C and display its answer

return 0;

}

...function oddNumbersCounter body

Submit your code in a file called Prob3a.cpp including your name and ID number.

b) (20 points) Recursive function.

Solve Part (a) using a recursive function. The use of for or while loops in the recursive function
is strictly prohibited. You are asked to use recursion instead. A solution based on for or while
loops is worth zero points. Call your function recursiveOddNumbersCounter. Prototype:

int recursiveOddNumbersCounter(int A[], int a, int b);

where a is the start and b is the end. Thus the initial call is

cout<<recursiveOddNumbersCounter(A,0,n-1);

where n is the length of A.

Write a test program and use the above examples.

Submit your code in a file called Prob3b.cpp including your name and ID number.

4

Problem 4 (20 points). Print all sorted arrays recursively
Let m and n be positive integers. In this problem we are interested in sorted length-n arrays whose

entries are integers in the set {1, 2, . . . , m}. We are interested in such arrays which are sorted in nonde-

creasing order.
Write a recursive function, which given m and n, prints all such sorted arrays. Your function should

also compute the total number N of those arrays.
Examples:

• For m = 2 and n = 2, the function should print

1 1

1 2

2 2

Thus N = 3.

• For m = 2 and n = 3, the function should print

1 1 1

1 1 2

1 2 2

2 2 2

Thus N = 4.

• For m = 3 and n = 5, the function should print

1 1 1 1 1

1 1 1 1 2

1 1 1 1 3

1 1 1 2 2

1 1 1 2 3

1 1 1 3 3

1 1 2 2 2

1 1 2 2 3

1 1 2 3 3

1 1 3 3 3

1 2 2 2 2

1 2 2 2 3

1 2 2 3 3

1 2 3 3 3

1 3 3 3 3

2 2 2 2 2

2 2 2 2 3

2 2 2 3 3

2 2 3 3 3

2 3 3 3 3

3 3 3 3 3

Thus N = 21.

• For m = 5 and n = 2, the function should print

5

1 1

1 2

1 3

1 4

1 5

2 2

2 3

2 4

2 5

3 3

3 4

3 5

4 4

4 5

5 5

Thus N = 15.

The time of your function should be in the order of the output size N (and not mn). That is, you are
expected to avoid recursive branches which do not eventually lead to valid sorted array.

Submit your solution in a file called Prob4.cpp including your name and ID number.

6

