
Problem 1

Write a function string replace(string str, string s1, string
s2) that returns a copy of str with all occurrences of s1 replaced with s2. For
example, if str is equal to “London”, s1 is equal to “on”, and s2 is equal to
“xyz” then replace(str, s1, s2) would return “Lxyzdxyz”. Test this
function in a main of your choice.

Problem 2

Without declaring any variable and without modifying the contents of the array,
complete the function max so that it returns the maximum value in an array of
integers between the indices specified by start and end.

int max(int a[], int start, int end)
{

…
}

Problem 3

Write a function string chooseRandomly(string *names, int N) that
returns a name at random from the dynamic array pointed to by names and whose
size is equal to N. Also, test this function in a main that repeatedly selects student
names at random (you can read the names from a file as in exercise 1 of assignment
10).

Problem 4

Write a recursive function int ternarySearch(int x, int A[], int
start, int end) that searches for x in the sorted array A. In contrast with
binary search, this function splits the array at two locations (third and
twoThirds) which results in three nearly equal parts: (start, third),
(third+1, twoThirds), and (twoThirds+1, end). If x is not found at
A[third] and A[twoThirds] then the function recursively searches in one of the
three parts. Define the base case as the one where end-start ≤ 5. If the base case
is reached, you should search for the element sequentially.

Problem 5

Write and test a new sorting algorithm called combinedSort. This algorithm splits
the array to be sorted into two equal parts. It sorts the first part using bubbleSort
and the second part using selectionSort. Then it combines the two parts using
the merging mechanism employed in mergeSort.

Problem 6

In geometry, polygons are represented using a set of vertices that are joined with line
segments to form a closed chain. For example, in the figure below, the vertices v0, v1,
v2, and v3 form a quadrilateral, which is a polygon with 4 vertices.

In this exercise, you are required to develop C++ code to represent polygons as
follows:

- Define a class Vertex which is similar to class Point used in assignment 8
except that the constructor doesn’t initialize the coordinates to random values.
You also need to add a function double distance(Vertex other)
that computes the Euclidean distance between the calling object and other.

- Define a class Polygon with the following members:
• Two private members: int nbVertices and

Vertex *vertices. The second variable will be used to point to a
dynamic array that stores the vertices of a given polygon. Choosing a
pointer is suitable in this case as the number of vertices might vary
from one instance of Polygon to another.

• A constructor Polygon(int n=3); that sets nbVertices to n
and dynamically creates an array of n vertices pointed to by
vertices. Initially, these vertices would be initialized according to
the default constructor of Vertex.

v1

v0

v2

v3

• A function void set(int i, int a, int b); that sets the
coordinates of the vertex at index i to a and b.

• A function double perimeter(); that computes the perimeter of
the polygon. This can be done by computing the sum of the distances
between every two consecutive vertices.

- Using the above, write a main that reads the necessary information about one
polygon from the user and computes its perimeter.

Problem 7

Write the following functions and test them in a main of your choice:

• void appendElement(int x, int* &A, int sizeA). This
function appends x to the end of the dynamic array pointed to by A. To
implement this function, you have to create a new array whose size is equal to
sizeA+1, copy the elements of the original array to the new one, add x to the
end, delete the old array, and let A point to the new one.

• void insertElement(int x, int index, int* &A, int
sizeA). This function is similar to the above except that x is inserted
between the elements at locations index and index+1.

• void deleteElement(int index, int* &A, int sizeA).
This function deletes the element at index. That is, you should create a new
dynamic array whose size is equal to sizeA-1, copy to it all the elements of
the original array except A[index], delete the old array, and let A point to
the new one.

