American University of Beirut Mathematics Department Fall Semester 2008-2009 Math 204 Final Exam

|--|

Name:	ID#:

- Instructors: Mrs. M. Itani Hatab ,Miss Lina Rahal & Miss Manal Salam
- Circle your problem solving section:

Section 11: Tu @12:00 **Section 12**: Tu @11:00

• Answer table for Part I

1		9		17	
2		10		18	
3		11		19	
4		12		20	
5		13		21	
6		14		22	
7		15		23	
8		16		24	

# of cor	rect answe	ers :				Total
# of wrong answers :Grade of Part I					/ 60	
1.	2.	3.	4.	5.	Grade of Part II	/ 40

Final Grade	

Part I (60%) : 24 multiple choice questions with 2.5 points for each correct answer.

Circle the correct answer then, copy your answers as a, b, c or d on the table provided on page 1:

- 1. For a standard normal distribution $P(-1.3 \le z \le 0.45) =$
 - a) 0.5768

- **b)** 0.1451 **c)** 0.2296 **d)** 0.7251
- 2. If P(B) = 0.4, P(A'/B) = 0.75 and $P(A \cup B) = 0.7$, then P(A) = 0.7

- **b)** 0.3

- 3. Given the matrices, $B = \begin{pmatrix} 5 & -1 \\ 0 & \frac{4}{3} \\ \frac{1}{2} & -2 \end{pmatrix}$, and $D = \begin{pmatrix} 5n 3m & n & 1 \\ -3 & 4 & -6 \end{pmatrix}$
 - If $3B = D^T$ then the constant m =
 - **a**) 5

- **4.** If $A = \begin{pmatrix} -2x & -1 \\ -4 & 3 \end{pmatrix}$, and $A^{-1} = \begin{pmatrix} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$, then $x = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$
 - a) 2

- 5. If $\int_{a}^{b} (2x^2 + 3x + 5)dx + \int_{b}^{a} (x^2 + 3x + 3)dx = \int_{a}^{b} f(x)dx$, then f(x) can be a) $x^2 - 2x$ b) $3x^2 + 6x - 8$ c) $x^2 - 2$ d) $x^2 + 2$

- **6.** If the matrix $A = (a_{ij})_{5\times4}$ is defined as $a_{ij} = \begin{cases} j-1 & \text{if } j \text{ is even} \\ j^2-2i & \text{if } j \text{ is odd} \end{cases}$ then $a_{33} + a_{24} = \dots$

- 7. If $\frac{x^2+1}{(x-1)(x-2)(x-3)} = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x-3}$ then
 - **a**) C = 2
- **b)** C = -5 **c)** C = 1 **d)** C = 5

8.	If the area to the left of z_0 on the standard normal curve is 0.0516 then the value of z_0 is							
	a) 1.63	b) -1.63	c) -1.96	d) 1.96				
9.	9. If $f(x,y) = 2yx^2 - y^3 + 4e^y(\ln x)$ then $f_x(2,0) =$							
	a) 1	b) 0	c) 2	d) 5				
		ontestants in a beauty contest.	In how many ways	s can the judges choose the three				
a) 20!	b) $_{20}C_3 = \binom{20}{3}$	c) $_{20}P_{3}$	d) 20 ³				
		ontestants in a beauty contest.		s can the judges choose the Beaut				
a) 20!	b) $_{20}C_3 = \begin{pmatrix} 20\\3 \end{pmatrix}$	c) $_{20}P_{3}$	d) 20 ³				
	•		-	followed by 2 digits such that the				
	•	nt from zero, then the numbe	-					
a)	$(26)^2(10)^2$	$\mathbf{b}) \ 25 \times 26 \times 9 \times 10$	\mathbf{c})(25) ² (9) ²	d) $25 \times 26 \times (10)^2$				
13.	X is a normally	distributed variable with a n	nean equal to 40 and	d a standard deviation				
	equal to 5. The	probability that X is between	46.6 and 48 is					
	a) 0.0542	b) 0.3462	c) 0.0386	d) 0.0575				
Co	nsider the defin	nite integral: $I = \int_{1}^{5} (25 - x^2) dx$	¢.					
14. The approximation of the definite integral I using the trapezoidal rule with n=4 is:								
	a) 42	b) 58	c) 38	d) 48				
15. The approximation of the definite integral I using the Simpson's rule with n=4 is:								
	a) $\frac{136}{3}$	b) $\frac{156}{3}$	c) $\frac{126}{3}$	d) $\frac{176}{3}$				
16. If $f(x) = e^{-5x}$ then $f^{(53)}(x) =$								
	a) $5^{53}e^{-5x}$	b) $-53e^{-5x}$ c)	$-5^{53}e^{-5x}$	d) $-5e^{-53x}$				

17. All the critical points of the function $f(x, y) = x^4 - 2x^2 + y^2 - 6y + 10$ are									
a) $(0, 3, 1)$ $(1, 3; 0)$ $(-1, 3, 0)$ b) $(1, 3, 0)$ $(-1, -3, 0)$ $(0, 0, 10)$									
c) (1, 3, 0) (-1, 3,	0)	d) (0, 3, 1) (1, 3, 0)							
18. The point (1, 3, 0) is								
a) a saddle point	b) a local minimum	c) a local maximum	d) not a critical point						
The probability that a	certain drug produces	undesirable effects in all p	atients who use it is 0.2.						
19. In a sample of six undesirable effect		s, the probability that exact	tly four patients have						
a) 0.01536	b) 0.4328	c) 0.2458	d) 0.3241						
-	patients using the drug effects is	g, the probability that exact	tly two patients don't						
a) 0.01536	b) 0.4328	c) 0.2458	d) 0.3241						
21. In a sample of 30 undesirable effects is		, the average number of pa	atients expected to have						
a) 4	a) 4 b) 6 c) 8 d) 20								
X is a discrete randor	n variable with the follo	owing probability distribut	ion.						
X 1	2 3								
P(X) 0.2	0.4 0.4								
22. The mean of this	distribution is								
a) 2.2	b) 0.33	c) 1.8	d) 2						
23. The standard devi	iation of this distributio	n is							
a) 0.85	b) 1.46	c) 0.75	d) 1						
24. Given the matrix $A = \begin{pmatrix} 3 & 8 & 2 \\ 2 & 1 & 2 \\ -1 & -2 & 0 \end{pmatrix}$.									
The cofactor of tr	the element a_{23} is								
a) -3	b) 3	c) 2	d) -2						

Part II (40%) Answer each of the following questions, explain and show your work

(8%) 1. Given the system of equations AX=B,
$$\begin{cases} x_1 + 2x_2 + x_3 = 1 \\ 3x_1 + 7x_2 + 3x_3 = -2 \\ 5x_1 + 10x_2 + 10x_3 = 0 \end{cases}$$

- **a.** Use the Gaussian method to find A^{-1} , where A is the matrix of coefficients. **b.** Use A^{-1} to solve the given system.

(8%)

2. Given the following figure:

Find the coordinates of the points of intersection A, B, and C and D

Set the definite integral or the combination of definite integrals that give the area of the region bounded:

- **a.** the curve $h(x) = x^2$, and the straight line f(x) = x+2
- **b.** by the curve $h(x) = x^2$, and the two straight lines f(x) = x+2 and g(x) = 4.
- **c.** the curve $h(x) = x^2$, the straight line f(x) = x+2 and the x-axis.

(12%)

3. Evaluate each of the following integrals:

a.
$$\int \frac{(3 + \ln x)^5}{x} dx =$$

$$\mathbf{b.} \quad \int x^3 \ln x \ dx =$$

$$\mathbf{c.} \quad \int x^3 e^{-2x} \ dx =$$

d.
$$\int \frac{2x}{(x-2)^2(x-3)} dx =$$

4. Given the function $f(x) = \ln\left(\frac{(3x+5)^2(x^3+5)}{(7x+5)^3}\right)$ find f'(0), the first order derivative of f(x) at x = 0.

5. Given the following table that summarizes some characteristics of 50 persons.

(8%)

	A	В	С	Total
X	8		5	
Y		7		23
Total			16	50

Fill in the missing values and then answer the following **a.** Are the events of the set $\{B, CY, X\}$ mutually exclusive, and/or collectively exhaustive? (Explain)

b. Find:

$$P(A) =$$

$$P(C') =$$

$$P(A' \cup X) =$$

$$P(A'/X') =$$