Time: 2 hours

Math 204 Final Exam

24/01/07

Fall Semester 06/07

Instructor: Mrs. Muna Jurdak

Section 9: Thurs 3:30 p.m.

Section 10: Tues. 2:00 p.m.

Section 11: Tues. 12:30 p.m.

Section 12: Tues, 11:00 a.m.

## **Instructions:**

1. Write your name and ID number clearly where indicated.

- 2. <u>Circle your section number above</u>, according to the time of the problem solving session in which you are enrolled.
- 3. <u>Solve the problems on this, the white question sheet</u>. Use the colored sheets for scratch work only. <u>You may use the back of a white sheet to complete the solution of a problem.</u>
- 4. Write your name on the colored scratch sheet also.
- 5. Show your work in all the problems.
- 6. If you fail to write your name, ID number, or to circle your section number, you will lose grades.

| Problem          | Grade | Problem | Grade |
|------------------|-------|---------|-------|
|                  |       | 7       |       |
| 1                |       | -       |       |
|                  |       | 8       |       |
| 2                |       |         |       |
|                  |       | 9       |       |
| 3                |       |         |       |
|                  |       | 10      |       |
| 4                |       |         | W     |
|                  |       | 11      |       |
| 5                |       |         |       |
|                  |       | 12      |       |
| 6                |       |         |       |
|                  |       |         |       |
| Final Exam Grade |       | /100    |       |

(8%) 1. Find the coordinates of all critical points of the following function and determine the nature of each point.

$$f(x,y) = x^3 - y^2 - 3x + 4y - 5$$

(7%) 2. Find the 4 second-order partial derivatives for the function 5x

$$F(x,y) = \frac{5x}{y^3}$$

(8%) 3. Given the integral  $\int \sqrt{x^2 + 1} dx$ .

(a) Approximate the above integral using the Rectangle Rule, with the number of subintervals n = 4.

(b) Approximate the above integral using Simpson's Rule, also with n = 4.

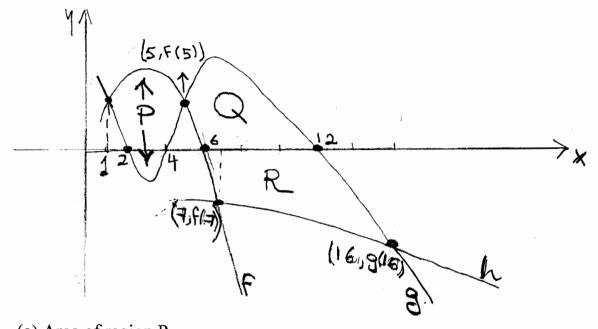
(12%) 4. Evaluate each integral:

(a) 
$$\int_{0}^{1} x^{4} (x^{5} - 1)^{7} dx$$

(b) 
$$\int \left(\frac{1}{x^4}\right) e^{\left(\frac{1}{x^3}\right)} dx$$

(c) 
$$\int \frac{dx}{\sqrt{x}(\sqrt{x}+3)}$$

(d) 
$$\int \frac{x}{\sqrt{2x-1}} dx$$


(6%) 5. Find 
$$g(x)$$
, if  $g''(x) = 12x^2 + e^x$ ,  $g'(0) = 2$ , and  $g(0) = 5$ .

(8%) 6. The solution to a system of equations having the matrix form AX = B can be found by the matrix multiplication  $X = \begin{pmatrix} 6 & -7 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} 15 \\ 11 \end{pmatrix}$ . What was the original system of equations? (Write the answer as a system of 2 equations with 2 unknowns.) Show your work.

- (13%) 7. A fair die is rolled 3 times. Let X be the number of 6's obtained.
  - (a) Construct the probability distribution of X.

- (b) Find the probability that no more than two 6's are obtained.
- (c) Find the mean and standard deviation of the probability distribution of the variable X.
- (7%) 8. Given the function  $z = f(x,y) = 25x^2y 10xy + 200x 500$ . (a) Find f(10,1).
  - (b) Using a certain derivative, estimate the expected change in z, if y increases by 1 unit, and x remains constant.
  - (c) Compare the expected change found in (b) with the actual change in z, if y increases by 1 unit.

(9%) 9. Referring to the following figure, set up the combinations of definite integrals that would compute each of the following areas:

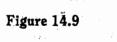


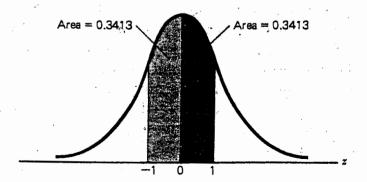
(a) Area of region P.

(b) Area of region Q.

(c) Area of region R.

- (8%) 10. A box contains a set of 30 balls: 20 red, 5 blue and 5 green in color. Three balls are selected at random from the box, one at a time, consecutively. What is the probability that the three balls are of three different colors,
  - (a) If the selection is done with replacement? Explain.


(b) If the selection is done without replacement? Explain.


(6%) 11. Find the area of the region bounded below by the curve  $y = x^2 - 4$ , above by the line y = 2 - x, and to the left by the y-axis. Draw a sketch.

(8%) 12. The scores on a test are normally distributed, with a mean of 100 and a standard deviation of 15. If a personnel manager of a company, wishes to select from the top 20% of the applicants who take the test, find the cutoff score (lowest score that would be considered for selection).

TABLE 1

|     | .00    | .01           | .02   | .03             | .04   | .05   | .06   | .07   | .08   | .09   |
|-----|--------|---------------|-------|-----------------|-------|-------|-------|-------|-------|-------|
| 0.0 | .0000  | .0040         | .0080 | .0120           | .0160 | .0199 | .0239 | .0279 | .0319 | .0359 |
| 0.1 | .0398  | .0438         | .0478 | .0517           | .0557 | .0596 | .0636 | .0675 | .0714 | .0753 |
| 0.2 | .0793  | .0832         | .0871 | <b>.</b> 0910 ° | .0948 | .0987 | .1026 | .1064 | .1103 | .1141 |
| 0.3 | .1179  | .1217         | .1255 | .1293           | .1331 | .1368 | .1406 | .1443 | .1480 | 1517  |
| 0.4 | .1554  | .1591         | .1628 | .1664           | .1700 | .1736 | .1772 | .1808 | .1844 | .1879 |
| 0.5 | .1915  | .1950         | .1985 | .2019           | .2054 | .2088 | .2123 | .2157 | .2190 | .2224 |
| 0.6 | .2257  | .2291         | .2324 | .2357           | .2389 | 2422  | .2454 | .2486 | .2518 | .2549 |
| 0.7 | .2580  | .2612         | .2642 | .2673           | .2704 | .2734 | .2764 | .2794 | .2823 | .2852 |
| 0.8 | .2881  | .2910         | .2939 | .2967           | 2995  | .3023 | .3051 | .3078 | .3106 | .3133 |
| 0.9 | .3159  | .3186         | .3212 | .3238           | .3264 | .3289 | .3315 | .3340 | .3365 | .3389 |
| 1.0 | .3413  | .3438         | .3461 | .3485           | .3508 | .3531 | .3554 | .3577 | .3599 | .3621 |
| 1.1 | .3643  | .3665         | .3686 | .3708           | .3729 | .3749 | .3770 | .3790 | .3810 | .3830 |
| 1.2 | .3849  | .3869         | .3888 | .3907           | .3925 | .3944 | .3962 | .3980 | .3997 | .4015 |
| 1.3 | .4032  | .4049         | .4066 | .4082           | .4099 | .4115 | .4131 | .4147 | .4162 | .4177 |
| 1.4 | .4192  | .4207         | .4222 | .4236           | .4251 | .4265 | .4279 | .4292 | .4306 | .4319 |
| 1.5 | .4332  | .4345         | .4357 | .4370           | .4382 | .4394 | .4406 | .4418 | .4429 | .4441 |
| 1.6 | .4452  | <b>.446</b> 3 | .4474 | .4484           | .4495 | .4505 | .4515 | .4525 | .4535 | .4545 |
| 1.7 | .4554  | .4564         | .4573 | .4582           | .4591 | .4599 | .4608 | .4616 | .4625 | .4633 |
| 1.8 | .4641  | .4649         | .4656 | .4664           | .4671 | .4678 | .4686 | .4693 | .4699 | .4706 |
| 1.9 | .4713  | .4719         | .4726 | .4732           | .4738 | .4744 | .4750 | .4756 | .4761 | .4767 |
| 2.0 | .4772  | .4778         | .4783 | .4788           | .4793 | .4798 | .4803 | .4808 | .4812 | .4817 |
| 2.1 | .4821  | .4826         | .4830 | .4834           | .4838 | .4842 | .4846 | .4850 | .4854 | .4857 |
| 2.2 | .4861  | .4864         | .4868 | .4871           | .4875 | .4878 | .4881 | .4884 | .4887 | .4890 |
| 2.3 | .4893  | .4896         | .4898 | .4901           | .4904 | 4906  | .4909 | .4911 | .4913 | .4916 |
| 2.4 | .4918  | .4920         | .4922 | .4925           | .4927 | .4929 | .4931 | .4932 | .4934 | .4936 |
| 2:5 | .4938  | .4940         | .4941 | .4943           | .4945 | .4946 | .4948 | .4949 | .4951 | .4952 |
| 2.6 | .4953  | .4955         | .4956 | .4957           | .4959 | .4960 | .4961 | .4962 | .4963 | .4964 |
| 2.7 | .4965  | .4966         | .4967 | .4968           | .4969 | .4970 | .4971 | .4972 | .4973 | .4974 |
| 2.8 | .4974  | .4975         | .4976 | .4977           | .4977 | .4978 | .4979 | .4979 | .4980 | .4981 |
| 2.9 | .4981  | .4982         | .4982 | .4983           | 4984  | .4984 | .4985 | .4985 | .4986 | .4986 |
| 3.0 | .49865 | .4987         | .4987 | .4988           | .4988 | .4989 | .4989 | .4989 | .4990 | .4990 |



