AMERICAN UNIVERSITY OF BEIRUT Mathematics Department-FAS

MATH 251 QUIZ 1 Fall 2014-2015 Closed Book, 75 mn

STUDENT NAME	
ID NUMBER	

Problem	Out of	Grade
1	11	
2	18	
3	10	
4	11	
TOTAL	50	

1. (11 points) Let d be a number given in decimal representation:

$$d = (123.175)_{10} \times 10^{31}$$

To convert d to a binary number in the <u>IEEE Single Precision</u> floating point system, proceed as follows:

(a) (6 pts)Convert first d to an Octal number $(d)_8$.

 $(d)_8 =$

(b) (5 pts)Convert then $(d)_8$ to a binary number $(d)_2$ in IEEE Single precision, and write its Hexadecimal representation. (Use rounding to the closest, if needed).

 $(d)_2 =$

Hexa decimal representation of x:

2. (18 points)

(a) (2 pts) Let x be a <u>NEGATIVE</u> binary number with $|x| > x_{max}$ in the IEEE Single precision system. Write the hexadecimal representation $[H_1 \ H_2 \ H_3 \ H_4 \ H_5 \ H_6 \ H_7 \ H_8]_{16}$ of x in that case.

(b) (1 pt) Deduce then the hexadecimal representation in Single precision of the binary number $x = -2^{+128}$.

(c) (4 pts)In IEEE Single precision, find the next largest machine number (successor(x)) for the binary number x above. Identify successor(x), then write its Hexadecimal representation. Justify all steps.

Successor(x)

• Hexadecimal representation of successor(x) in Single precision:

- (d) (4 pts) Let x_M be the midpoint of the interval $[0, x = -2^{+128}]$. Write the machine number representing x_M in IEEE Single Precision, then write its HEXADECIMAL representation:
 - \bullet machine number representing x_M in IEEE Single Precision

• <u>HEXADECIMAL</u> representation of x_M in Single Precision

(e) (4 pts)In IEEE Single precision, find the next smallest machine number (predecessor(x_M)) for the binary number x_M found above, then write its Hexadecimal representation. Justify all steps.

 $\underline{Predecessor(x_M)}$

• Hexadecimal representation of $predecessor(x_M)$ in Single precision:

(f) (3 pts) In IEEE Double precision: write first x in normalized floating point form, then write its corresponding Hexadecimal representation.

• *x*=

 \bullet Hexa decimal representation of x in Double precision 3. (10 points) Consider the real valued function

$$f(x) = \frac{e^x - \cos x}{\sin x}$$

(a) (2 pts) For which values of x is there a loss of precision when computing f(x). Justify your answer.

(b) (5 pts) Find a remedy to this problem based on adequate Taylor's series expansion . <u>Hint</u>: Note that $\lim_{x\to 0} \frac{\sin x}{x} = 0$ (c) (3 pts) Use the first 3 terms of the suggested remedy, to compute $f(10^{-3})$ up to 7 decimal digits (p=7), with rounding to the closest.

- 4. (11 points) Consider the function $f(x) = (2x-1)(x+3) + \frac{1}{x+1}$ defined on $D_f = (-\infty, -1) \cup (-1, +\infty)$.
 - (a) (6 pts)**Locate** all the roots of f(x) on D_f , through either graphing f(x) or by using a fixed point argument.

- (b) (5 pts)In order to compute the positive root of f(x) up to 4 decimal figures with rounding to the closest in the interval (0, 1), apply first the bisection method twice, followed by Newton's method . • Bisection method twice:

• Newton's method up to 4 decimal figures: