AMERICAN UNIVERSITY OF BEIRUT Mathematics Department-FAS

MATH 251

QUIZ 1
Fall 2014-2015
Closed Book, 75 mn

STUDENT NAME	
ID NUMBER	

Problem	Out of	Grade
1	11	
2	18	
3	10	
4	11	
TOTAL	50	

1. (11 points) Let d be a number given in decimal representation:

$$
d=(123.175)_{10} \times 10^{31}
$$

To convert d to a binary number in the IEEE Single Precision floating point system, proceed as follows:
(a) (6 pts)Convert first d to an Octal number $(d)_{8}$.
$(d)_{8}=$
(b) (5 pts)Convert then $(d)_{8}$ to a binary number $(d)_{2}$ in IEEE Single precision, and write its Hexadecimal representation. (Use rounding to the closest, if needed).
$(d)_{2}=$

Hexadecimal representation of x :

2. (18 points)

(a) (2 pts) Let x be a NEGATIVE binary number with $|x|>x_{\max }$ in the IEEE Single precision system. Write the hexadecimal representation $\left[\begin{array}{llllllll}H_{1} & H_{2} & H_{3} & H_{4} & H_{5} & H_{6} & H_{7} & H_{8}\end{array}\right]_{16}$ of x in that case.
(b) (1 pt) Deduce then the hexadecimal representation in Single precision of the binary number $x=-2^{+128}$.
(c) (4 pts)In IEEE Single precision, find the next largest machine number (successor(x)) for the binary number x above. Identify successor(x), then write its Hexadecimal representation. Justify all steps.
$\underline{\text { Successor }(x)}$

- Hexadecimal representation of $\operatorname{successor}(x)$ in Single precision:
(d) (4 pts) Let x_{M} be the midpoint of the interval $\left[0, x=-2^{+128}\right]$. Write the machine number representing x_{M} in IEEE Single Precision, then write its HEXADECIMAL representation:
- machine number representing x_{M} in IEEE Single Precision
- HEXADECIMAL representation of x_{M} in Single Precision
(e) (4 pts)In IEEE Single precision, find the next smallest machine number (predecessor $\left(x_{M}\right)$) for the binary number x_{M} found above, then write its Hexadecimal representation. Justify all steps.
$\underline{\operatorname{Predecessor}\left(x_{M}\right)}$
- Hexadecimal representation of predecessor $\left(x_{M}\right)$ in Single precision:
(f) (3 pts) In IEEE Double precision: write first x in normalized floating point form, then write its corresponding Hexadecimal representation.
- $x=$
- Hexadecimal representation of x in Double precision

3. (10 points) Consider the real valued function

$$
f(x)=\frac{e^{x}-\cos x}{\sin x}
$$

(a) (2 pts) For which values of x is there a loss of precision when computing $f(x)$. Justify your answer.
(b) (5 pts) Find a remedy to this problem based on adequate Taylor's series expansion.
Hint: Note that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=0$
(c) (3 pts) Use the first 3 terms of the suggested remedy, to compute $f\left(10^{-3}\right)$ up to 7 decimal digits ($\mathrm{p}=7$), with rounding to the closest.
4. (11 points) Consider the function $f(x)=(2 x-1)(x+3)+\frac{1}{x+1}$ defined on $D_{f}=(-\infty,-1) \cup(-1,+\infty)$.
(a) (6 pts)Locate all the roots of $f(x)$ on D_{f}, through either graphing $f(x)$ or by using a fixed point argument.
(b) (5 pts)In order to compute the positive root of $f(x)$ up to 4 decimal figures with rounding to the closest in the interval $(0,1)$, apply first the bisection method twice, followed by Newton's method . - Bisection method twice:

- Newton's method up to 4 decimal figures:

