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1 Introduction

As in the previous chapter, let Dn be a set of n+ 1 given points in the (x, y) plane:

Dn = {(xi, yi)| 0 ≤ i ≤ n; a = x0 < x1 < ... < xn = b; yi = f(xi)},(1)

for some function f(x). Our basic objectives in this chapter are to seek accurate “approxi-
mations”, based on Dn for:

1. f ′(xi) and f”(xi) : i = 0, 1, ..., n (Numerical Differentiation),

2. I =
∫ b
a
f(x) dx (Numerical Integration).

In what follows and unless stated otherwise, we shall assume that the x-data in Dn are
equi-spaced, with:

h = xi+1 − xi.

The topics of Numerical differentiation and Integration shall be made, solely relying on the
standard Taylor’s formula and the Intermediate Value Theorem, thus completely indepen-
dant of the theory of interpolation as classically used in most textbooks (see [?], [?], [?]). To
start, our discussion shall be illustrated on the following set of data related to the Bessel’s
function:

Example 1 Consider the following table of data associated with the function f(x) = J0(x),
the 0-th order Bessel’s function of the first kind.

i xi yi

0 0.00 1.0000000
1 0.25 0.98443593
2 0.50 0.93846981
3 0.75 0.86424228
4 1.00 0.76519769
5 1.25 0.64590609
6 1.50 0.51182767
7 1.75 0.36903253
8 2.00 0.22389078

Table 1. Data for J0(x), x = 0.0 0.25, ..., 2.00

The data is associated with 8 equidistant intervals of size h = 0.25.

2 Mathematical Prerequisites

In this section, we give a review of some basic results in Calculus.
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2.1 Taylor’s formula

Let h0 > 0 and m ∈ IR . Assume the function f(x) ∈ Ck+1[(m − h0,m + h0)] that is, its
derivatives:

{f (j)(x) : j = 1, ..., k, k + 1}
are continuous in the interval (m − h0,m + h0) . Then for all h < h0 ∈ IR , there exists
t ∈ (0, 1), such that:

f(m+ h) = f(m) + f ′(m)h+ f (2)(m)
h2

2
+ ...(2)

...+ f (k)(m)
hk

k!
+ f (k+1)(c)

hk+1

(k + 1)!
,

with c = m+th. Formula (2) will be refered to as “Taylor’s development about m” up to the

k−th order, the “remainder term” being Rk = f (k+1)(c) hk+1

(k+1)!
. Using the big-O(.) notation,

we abbreviate the formula as follows:

f(m+ h) = f(m) + f ′(m)h+ f (2)(m)
h2

2
+ ...+ f (k)(m)

hk

k!
+O(hk+1)(3)

or for more convenience give it a form that is independent of the order of the development,
that is under the assumption that the derivatives of f are continuous up to any order (f ∈
C∞[(m− h0,m+ h0)]):

f(m+ h) = f(m) + f ′(m)h+ f (2)(m)
h2

2
+ ...+ f (k)(m)

hk

k!
+ ...(4)

Hence, we will consider as equivalent (2), (3) or (4).

2.2 Intermediate Value Theorem

Let g be a continuous function defined over some subset D ⊂ IR . Then for every finite
ordered subset of points {m1,m2, ...,mk} in D, there exists a number c ∈ D, such that:

k∑
i=1

g(mi) = kg(c).(5)

2.3 Mean Value Theorems

1. First Mean Value Theorem
This theorem results from the application of Taylor’s formula where the error term is
expressed in terms of the first order derivative, specifically:

f(m+ h)− f(m) = hf ′(c), c ∈ (m,m+ h),

which is equivalent to: ∫ m+h

m

f ′(x)dx = f ′(c)h.(6)
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2. Second Mean Value Theorem
This one generalizes the previous one, (6) becoming:∫ m+h

m

w(x)g(x)dx = g(c)

∫ m+h

m

w(x)dx,(7)

where g(x) and w(x) are continuous functions with w(x) ≥ 0 (or w(x) ≤ 0).

3 Numerical Differentiation

3.1 1st order Derivatives and Divided Differences

Based on the set of points (1), Divided Differences appear to provide efficient “discrete”
tools to approximate derivatives. This is illustrated by the following proposition which is
essential in this chapter.

Theorem 1 Assume that the function f is k-times continuously differentiable in D. Then
for every subset of distinct points {xi, xi+1, ..., xi+k} in D, there exists c ∈ (xi, xi+k), such
that

[xi, xi+1, ..., xi+k] =
f (k)(c)

k!
.(8)

This theorem suggests the following approximation formulae for 1st order derivatives (k=1):

f ′(xi) ≈


.[xi, xi+1] = yi+1−yi

h
= ∆hyi

h
(9.1)

.[xi−1, xi] = yi−yi−1

h
= ∇hyi

h
(9.2)

.[xi−1, xi+1] = yi+1−yi−1

2h
= δhyi

2h
(9.3)

(9)

These approximations to the 1st derivative are successively: the Forward Difference (9.1),
the Backward Difference (9.2) and the Central (9.3) Approximations.
Obviously, in the example above, the 1st approximation formula for the derivative is partic-
ularly suitable at the top of the table above, while the 2nd approximation can be used at the
bottom. The 3rd one approximates f ′(xi) anywhere in between.

3.2 Error Analysis: Order of the methods

Let h be a positive number, such that 0 < h < 1.

• Forward Difference approximation:
Using Taylor’s formula up to first order, we can write:

f(x+ h) = f(x) + hf ′(x) +
1

2
h2f ′′(c1)(10)

where c1 is in the interval (x, x+ h), which leads to:
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f ′(x) =
1

h
[f(x+ h)− f(x)]− 1

2
hf (2)(c1)

or equivalently:

f ′(x) =
1

h
[f(x+ h)− f(x)] +O(h)

Hence the approximation:

f ′(x) ≈ 1

h
[f(x+ h)− f(x)] =

∆hf(x)

h

is the 1st order Forward Difference approximation (9.1) to f ′(x), with a truncation
error whose most dominant term is of order h. We write then: E = O(h).

• Backward Difference approximation:
Likewise, replacing h by (−h), equation (10) implies then:

f(x− h) = f(x)− hf ′(x) +
1

2
h2f ′′(c2)(11)

where c2 is in the interval (x− h, x), leading to:

f ′(x) =
1

h
[f(x)− f(x− h)] +O(h)

Hence the approximation:

f ′(x) ≈ 1

h
[f(x)− f(x− h)] =

∇hf(x)

h

is the 1st order Backward Difference approximation (9.2) to f ′(x), and its truncation
error term is of order h, that is E = O(h).

Remark 1 Note that for the Forward and Backward Difference approximations, it is
enough that f ∈ C2(D). The truncation error in these approximation formulae remains
O(h) when calculations are performed with higher order regularity conditions on f , that
is when f ∈ Ck(D), with k > 2.

• Central Difference approximation:
It is advantageous to have the convergence of numerical processes occur with higher
orders. At this stage, we aim to obtain an approximation to f ′(x) in which the er-
ror behaves like O(h2). One such result is achieved based on the Central Difference
approximation with the aid of Taylor’s series where f is assumed to have continuous
derivatives up to order 3 at least, that is f ∈ Ck(D), with k ≥ 3. Thus:

f(x+ h) = f(x) + hf ′(x) +
1

2!
h2f (2)(x) +

1

3!
h3f (3)(c1)(12)
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where x < c1 < x+ h.

and similarly:

f(x− h) = f(x)− hf ′(x) +
1

2!
h2f (2)(x)− 1

3!
h3f (3)(c2)(13)

where x− h < c2 < x.
By subtraction and using the Intermediate Value Theorem, we obtain:

f(x+ h)− f(x− h) = 2hf ′(x) +
2

3!
h3f 3(c)(14)

where c1 < c < c2.
This leads to a new approximation for f ′(x):

f ′(x) =
1

2h
[f(x+ h)− f(x− h)] +O(h3)(15)

where the approximation

f ′(x) ≈ f(x+ h)− f(x− h)

2h
=
δhf(x)

2h

is the 1st order Central Difference approximation to f ′(x), with its truncation error
E = O(h2).

Remark 2 In the derivation of the Central Difference approximation formula, in case one
considers Taylor’s series expansion up to first order only, then equations (12) and (13) lead
to:

f ′(x) =
δhf(x)

2h
+
h

4
εh

where εh = f”(c1)− f”(c2) and x− h < c1 < c2 < x+ h.

• If f ∈ C2(D): limh→0 εh = 0, that is in a ”naive” sense, εh behaves ”nearly” like O(h).
Consequently, he truncation error E = O(h+), or also E ≈ O(h2)

• If f ∈ C3(D): by the Mean Value theorem f”(c1)−f”(c2) = hf ′(c), implying obviously
that E = O(h2).

Based on these results, when using the Central Difference approximation formula to the
derivative, we shall consider f ∈ C3(D).

The basic approximation results to the 1st derivatives are then summarized as follows:

Proposition 1 Let 0 < h < 1. Then

f ′(x) =


∆hf(x)

h
− f (2)(c1)h

2
= ∆hf(x)

h
+O(h); (f in C2) (16.1)

∇hf(x)
h

+ f (2)(c2)h
2

= ∇hf(x)
h

+O(h); (f in C2) (16.2)
δhf(x)
h
− f (3)(c)h

2

6
= δhf(x)

2h
+O(h2); (f in C3) (16.3)

(16)
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where c1 ∈ (x, x+ h), c2in(x− h, x) and c ∈ (x− h, x+ h).

In case x = xi, the formulae above are written in terms of 1st order finite divided differ-
ences as follows:

f ′(xi) =


∆hf(xi)

h
+O(h) = [xi, xi + h] +O(h)

∇hf(xi)
h

+O(h) = [xi − h, xi] +O(h)
δhf(xi)

2h
+O(h2) = [xi − h, xi + h] +O(h2)

Example 2 In the data of Table 1, find approximations to J ′0(0) = 0 using the forward
difference approximation formula.

Applying formula (16.1), one has the following results.

h 1
h
∆hf(0)

0.25 -0.06225629
0.50 -0.12306039
0.75 -0.18101029
1.00 -0.23480231

Table 2. Approximations for J ′0(0), with h = 0.25, 0.50, 0.75, 1.00

Example 3 In the data of Table 1, find approximations to J ′0(0.25) = −0.12402598 using
the forward difference, the backward difference and the central difference approximations
formulae.

h 1
h
∆hf(0.25) 1

2h
δhf(0.25) 1

h
∇hf(0.25)

0.25 -0.18386448 -0.12306038 -0.06225628

Table 3. Approximations for J ′0(0.25) = −0.12402598, using the formulae in (16) with h = 0.25

Example 4 In the data of Table 1, find approximations to J ′0(1) = −0.44005059 using the
central difference approximation formula.

Applying formula (16.3), one has the following results.

h 1
2h
δhf(1)

0.25 -0.43667238
0.50 -0.42664214
1.00 -0.38805461

Table 4. Approximations for J ′0(1) = −0.44005059, using (16.3) with h = 0.25, 0.50, 1.00

In order to obtain higher order approximations to the derivatives, it is possible to use a
powerful technique known as Richardson Extrapolation. We illustrate this process on
the basis of the forward (≡ backward) difference and central difference approximations to
f
′
(x).

6



3.3 1st order derivatives and Richardson extrapolation

3.3.a Forward and Backward Difference Richardson Extrapolation

Recall that for a function f ∈ C∞, the infinite Taylor’ s series expansion formula of f(x+h)
is as follows:

f(x+ h) = f(x) + hf ′(x) +
h2

2!
f (2)(x) +

h3

3!
f (3)(x) + ...

leading to:

f ′(x) =
∆hf(x)

h
+ a1f

(2)(x)h+ a2f
(3)(x)h2 + a3f

(4)(x)h3 + ...(17)

where the {ai}’s are universal constants independent of h and f .

Define now

φh(.) =
1

h
∆h(.)(18)

• Considering successively h then 2h in (17), one has:

(17.a) f ′(x) = φh(f(x)) + a1f
(2)(x)h+ a2f

(3)(x)h2 + a3f
(4)(x)h3 + ...

(17.b) f ′(x) = φ2h(f(x)) + a1f
(2)(x)2h+ a2f

(3)(x)(2h)2 + a3f
(4)(x)(2h)3 + ...

The algebraic operation 2× (17.a)− (17.b) yields then:

f ′(x) = 2φh(f(x))− φ2h(f(x))− 2a2f
(3)(x)h2 +O(h3).

Introducing the 1st order Forward Richardson extrapolation operator, let:

φ1
h(f(x)) = 2φh(f(x))− φ2h(f(x))(19)

One obtains:

f ′(x) =

{
φ1
h(f(x)) + a′2f

(3)(x)h2 + a′3f
(4)(x)h3 + ...

φ1
h(f(x)) +O(h2)

(20)

Therefore, by eliminating (or ”killing”) the most dominant term in the error series us-
ing simple algebra, φ1

h(f(x)) provides a forward approximation to f ′(x) with an error
term of order O(h2).
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• The process can be further continued, i.e. one can consider second order Richard-
son extrapolations. From equation (20), one has simultaneously:

(20.a) f ′(x) = φ1
h(f(x)) + a′2f

(3)(x)h2 + a′3f
(4)(x)h3 + ...

(20.b) f ′(x) = φ1
2h(f(x)) + a′2f

(3)(x)(2h)2 + a′3f
(4)(x)(2h)3 + ...

The algebraic operation 4× (20.a)− (20.b) eliminates again the dominant term in the error
series and yields:

f ′(x) =
4φ1

h(f(x))− φ1
2h(f(x))

3
− 4

3
a′3f

(4)(x)h3 +O(h4)

Introducing the 2nd order Richardson extrapolation operator, let

φ2
h(f(x)) =

4φ1
h(f(x))− φ1

2h(f(x))

3
(21)

One obtains:

f ′(x) =

{
φ2
h(f(x))− 4

3
f (4)(x)h3 + ...

φ2
h(f(x)) +O(h3)

(22)

This is yet another improvement in the precision to O(h3) i.e. φ2
h(f(x)) provides a third

order approximation to f ′(x). The successive Richardson extrapolation formulae and error
estimates are then as follows:

f ′(x) =


φh(f(x)) +O(h)
φ1
h(f(x)) +O(h2)
φ2
h(f(x)) +O(h3)
φ3
h(f(x)) +O(h4)
......

(23)

where:
φh(.) = ∆h(.)

h
; φ1

h = 21φh(.)−φ2h(.)
21−1

; φ2
h(.) =

22φ1h(.)−φ12h(.)

22−1
and φ3

h(.) =
23φ2h(.)−φ22h(.)

23−1

The kth-order Forward Richardson operator is then:

φkh(.) =
2kφk−1

h (.)− φk−1
2h (.)

2k − 1

with the error term of order O(hk+1).
The same procedure can be repeated over and over again to kill higher and higher terms in
the error series. This is Richardson extrapolation!
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Remark 3 In the process above, let φkh(.) = F (φk−1
h (.), φk−1

2h (.)) be the function approximat-
ing the derivative f ′(.) in terms of 2 valid previous evaluations, with an error E = O(hk+1).
Richardson extrapolation method allows to obtain an improved approximation formula φkh(.)
without decreasing the value of h (that would favour increasing round-off errors). Thus
through that process, the new approximation is ”extrapolated” to the exact value of the deriva-
tive.

Example 5 On the basis of Table 2, find improvements of the results using Richardson’s
extrapolation of the 1st and second order to f

′
(x).

We apply (19) and , (21) yielding the following results:

h φh = 1
h
∆h(f(0)) φ1

h(f(0)) φ2
h(f(0))

1.00 -0.23480231 . .
0.50 -0.12306039 -0.01131847 .
0.25 -0.06225628 -0.00145217 0.001836597

Table 5. Approximations for J ′0(0).

Note that we can also derive Richardson extrapolation formulae based on the Backward
difference approximation to f ′(x) (9.2), i.e. starting with

f ′(x) =
∇h(f(x))

h
+ b1f

(2)(x)h+ b2f
(3)(x)h2 + ...

where the {bi} are constants independent of h, we let then:

χh(.) =
∇h(.)

h
(24)

It is easy to verify that the successive Backward Difference Richardson operators
thus obtained, have the same constant coefficients as those of the corresponding Forward
Difference formulae. More explicitly:

f ′(x) =


χh(f(x)) +O(h)
χ1
h(f(x)) +O(h2)
χ2
h(f(x)) +O(h3)
......

(25)

where: χh(.) = ∇h(.)
h

and χkh(.) =
2kχk−1

h (.)−χk−1
2h (.)

2k−1
where the error term is O(hk+1).

3.3.b Central Difference Richardson Extrapolations

In the preceding section, we verified that the Central Difference approximation to f ′(x)
satisfies the following equation:

f ′(x) =
δh(f(x))

2h
+ d1f

(3)(x)h2 + d2f
(5)(x)h4 + ... =

δh(f(x))

2h
+O(h2).
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With such information, it is possible to rely again on the powerful technique of Richardson
extrapolation to wring more accuracy out of the method in the approximation-formulae of
f ′(x). Specifically, let

ψh(.) =
δh(.)

2h

Obviously, then:

f ′(x) = ψh(f(x)) + d1f
(3)(x)h2 + d2f

(5)(x)h4 + ... = ψh(f(x)) +O(h2)(26)

Taking successively h then 2h in the equation above, one has:

(26.a) f ′(x) = ψh(f(x)) + d1f
(3)(x)h2 + d2f

(5)(x)h4 + ...

(26.b) f ′(x) = ψ2h(f(x)) + d1f
(3)(x)(2h)2 + d2f

(5)(x)(2h)4 + ...

The algebraic operation 4× (26.a)− (26.b) yields:

f ′(x) =
4ψh(f(x))− ψ2h(f(x))

3
+O(h4)

Let the 1st order Richardson extrapolation operator be defined by

ψ1
h(.) =

22ψh(.)− ψ2h(.)

22 − 1

One can write then:
f ′(x) = ψ1

h(f(x)) +O(h4)(27)

Leading therefore to the following identities:

(27.a) f ′(x) = ψ1
h(f(x)) + d′2f

(5)(x)h4 + d′3f
(7)(x)h6 + ...

(27.b) f ′(x) = ψ1
2h(f(x)) + d′2f

(5)(x)(2h)4 + d′3f
(7)(x)(2h)6 + ...

The algebraic operation 16× (27.a)− (27.b) yields:

f ′(x) =
24ψ1

h(f(x))− ψ1
2h(f(x))

24 − 1
+O(h6)

or equivalently:
f ′(x) = ψ2

h(f(x)) +O(h6)

Again, the process can be repeated to obtain higher order accuracy in the approximations
of f ′(x).

10



Therefore, the 1st Central Difference Richardson extrapolation formulae obtained
are as follows:

f ′(x) =


ψh(f(x)) +O(h2)
ψ1
h(f(x)) +O(h4)
ψ2
h(f(x)) +O(h6)
......

(28)

where ψh(.) = δh(.)
2h

, ψ1
h(.) = 22ψh(.)−ψ2h(.)

22−1
, ψ2

h(.) =
24ψ1

h(.)−ψ1
2h(.)

24−1
....

The kth-order operator is then defined as follows:

ψkh(.) =
22kψk−1

h (.)− ψk−1
2h (.)

22k − 1

where the error term is O(h2k+2)

3.4 2nd Order Derivatives and Divided Differences.Error Analysis

A direct application of Theorem 1 with k = 2 suggests the following approximation formulae
for the 2nd derivative of f :

f ′′(xi) ≈


2[xi, xi+1, xi+2] = yi+2−2yi+1+yi

h2
=

∆2
hyi
h2

; Forward Difference

2[xi−2, xi−1, xi] = yi−2yi−1+yi−2

h2
=
∇2

hyi
h2

; Backward Difference

2[xi−1, xi, xi+1] = yi+1−2yi+yi−1

h2
=

δ2hyi
h2

; Central Difference

We start by estimating the order of convergence of each approximation formula:

• Forward Difference approximation
Consider the 2 Taylor’s series expansions of f up to 2nd order given by:

(i) f(x+ h) = f(x) + h
1!
f ′(x) + h2

2!
f ′′(x) + h3

3!
f (3)(c1) ; c1 ∈ (x, x+ h)

(ii) f(x+ 2h) = f(x) + (2h)
1!
f ′(x) + (2h)2

2!
f ′′(x) + (2h)3

3!
f (3)(c2) ; c2 ∈ (x, x+ 2h)

where f is assumed to be a C3-function.
The algebraic operation: f(x + 2h) − 2f(x + h) leads to the Forward Difference
Approximation to f ′′(x) verifying the following:

f ′′(x) =
f(x+ 2h)− 2f(x+ h) + f(x)

h2
+O(h) =

∆2
hf(x)

h2
+O(h)(29)

• Backward Difference approximation
Furthermore, replacing h by −h in equations (i) and (ii) above, one also has:

(iii) f(x− h) = f(x)− h
1!
f ′(x) + h2

2!
f ′′(x)− h3

3!
f (3)(c3) ; c3 ∈ (x− h, x)
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(iv) f(x− 2h) = f(x)− (2h)
1!
f ′(x) + (2h)2

2!
f ′′(x)− (2h)3

3!
f (3)(c4) ; c4 ∈ (x− 2h, x+)

The algebraic operation: f(x − 2h) − 2f(x − h) leads to the Backward Difference
Approximation to f ′′(x) verifying the following:

f ′′(x) =
f(x− 2h)− 2f(x− h) + f(x)

h2
+O(h) =

∇2
hf(x)

h2
+O(h)(30)

• Central Difference approximation
In this case we start by writing Taylor’s series expansions up to the 3rd order succes-
sively for f(x+ h and f(x− h) and then sum up the two series. This leads to:

f(x+ h) + f(x− h) = 2f(x) + f ′′(x)h2 +
h4

4!
(f (4)(c1) + f (4)(c2))

Dividing by h2 and using the Intermediate Value Theorem, one concludes that:

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
− h2

12
f (4)(c) =

δ2
h

h2
(f(x)) +O(h2)

Based on the results above, the following proposition is satisfied:

Proposition 2 Let 0 < h ≤ 1. Then

f ′′(x) =


∆2

hf(x)

h2
+O(h), (31.1)

∇2
hf(x)

h2
+O(h), (31.2)

δ2hf(x)

h2
+O(h2), (31.3)

(31)

where f is assumed to have up to third order continuous derivatives for the first 2 approxi-
mations (f ∈ C3), and up to fourth order continuous derivatives for the third approximation
(f ∈ C4).

In terms of finite differences, these results are expressed as follows:

f ′′(xi) ≈


2[xi, xi+1, xi+2] =

∆2
hyi
h2

+O(h); Forward Difference

2[xi−2, xi−1, xi] =
∇2

hyi
h2

+O(h); Backward Difference

2[xi−1, xi, xi+1] =
δ2hyi
h2

+O(h2); Central Difference

Remark 4 Based on Theorem 1, the following approximation formulae for the 3rd derivative
of f are obtained:

f ′′′(xi) ≈


6[xi, xi+1, xi+2, xi+3] =

∆3
hyi
h3

; ForwardDifference

6[xi−3, xi−2, xi−1, xi] =
∇3

hyi
h3

; BackwardDifference

6[xi−2, xi−1, xi+1, xi+2] =
δ3hyi
h3

; CentralDifference

12



3.5 2nd order derivatives and Richardson Extrapolation

In order to improve the order of the approximations of the 2nd derivative, we can use as pre-
cedingly the powerful tool of Richardson extrapolation applied successively to the Forward,
Backward and Central Difference formulae.
In this section, we analyze only the Richardson extrapolation Central Difference ap-
proximation to f ′′(x). In the equations above:

f ′′(x) ≈ f(x+ h)− 2f(x) + f(x− h)

h2
=
δ2
hf(x)

h2
(32)

Define then:

ψh(.) =
δ2
h(.)

h2

Adding the infinite series for f(x+ h) and f(x− h), one can write successively:

f ′′(x) = ψh(f(x)) + d1f
(4)(x)h2 + d2f

(6)(x)h4 + ...(33)

f ′′(x) = ψ2h(f(x)) + d1f
(4)(x)(2h)2 + d2f

(6)(x)(2h)4 + ...(34)

In order to eliminate the most dominant term of the error in the above 2 series, the
algebraic operation 4× (33)− (34) yields:

f ′′(x) =
4ψh(f(x))− ψ2h(f(x))

3
+O(h4)(35)

Defining the 1st order Richardson extrapolation operator by

ψ1
h(.) =

22ψh(.)− ψ2h(.)

22 − 1
,

one rewrites (35) as:
f ′′(x) = ψ1

h(f(x)) +O(h4)

which improves the order of approximation.

Obviously, one can derive the following estimates:

f ′′(x) =


ψh(f(x)) +O(h2)
ψ1
h(f(x)) +O(h4)
ψ2
h(f(x)) +O(h6)
......

(36)

where ψh(.) =
δ2h(.)

2h
, ψ1

h(.) = 22ψh(.)−ψ2h(.)
22−1

, ψ2
h(.) =

24ψ1
h(.)−ψ1

2h(.)

24−1
.

13



4 Numerical Integration

We consider now the approximation of I(a, b) ≡
∫ b
a
f(x)dx, based on the data Dn. As in the

numerical differentiation process, we assume the x-data to be equidistant, with:

h = xi+1 − xi,∀i.

Depending on the parity of n (i.e on the number of subintervals), we start by decomposing
the integral I into the sum of simple integrals over the subintervals [xi, xi+1] as follows:

I =

∫ x1

x0

f(x)dx+

∫ x2

x1

f(x)dx+ ...+

∫ xn

xn−1

f(x)dx =
n−1∑
k=0

∫ xk+1

xk

f(x)dx, ∀n

and in particular:

I =

∫ x2

x0

f(x)dx+

∫ x4

x2

f(x)dx+ ...+

∫ x2m

x2m−2

f(x)dx =
m−1∑
k=0

∫ x2k+2

x2k

f(x)dx, ∀n = 2m

Thus, we will be dealing with 2 types of formulae:

1. Simple Numerical integration formulae

Ik =

∫ xk+1

xk

f(x)dx ∀ n , or I ′k =

∫ x2k+2

x2k

f(x)dx , ∀ n = 2m

Subsequently,

2. Composite Numerical integration formulae

I =

∫ b

a

f(x)dx =
n−1∑
k=0

Ik ∀ n , or I =

∫ b

a

f(x)dx =
m−1∑
k=0

I ′k ,∀ n = 2m

We start with the simplest approximation method, called the Midpoint Rectangular
Rule.

4.1 The Midpoint Rectangular Rule

Such rule applies only in the case when the number of subintervals is even, that is when
n = 2m.

1. The formulae
A simple geometric argument consists in considering the integral I ′k as being the area
of the region between the x- axis, the curve y = f(x) and the vertical lines x = x2k

and x = x2k+2. Such area is then approximated by the surface of the rectangle which
vertical sides are x = x2k and x = x2k+2, and horizontal sides y = 0 and y = f(x2k+1).
In such case, the function values at the midpoints are known. For example, in the case
of the data in Table 1,

14



i xi f(xi)
0 0.00 1.0000000
1 0.25 0.98443593
2 0.50 0.93846981
3 0.75 0.86424228
4 1.00 0.76519769
5 1.25 0.64590609
6 1.50 0.51182767
7 1.75 0.36903253
8 2.00 0.22389078

the set of midpoints is {x1, x3, x5, x7}.This leads first to the simple Midpoint (rect-
angular) rule, given by:

I ′k =

∫ x2k+2

x2k

f(x)dx ≈Mk = 2hf(x2k+1), k = 0, 1, ...,m− 1.(37)

and subsequently to the composite Midpoint rule given by:

I ≡ I(a, b) =

∫ b

a

f(x)dx ≈M(h) = Σm−1
k=0 2hf(x2k+1)(38)

2. Error analysis
The error analysis of this method is based on either one of Taylor’s formulae where the
expansion is made about the point x = x2k+1, yielding:

f(x) = f(x2k+1) + f ′(x2k+1)(x− x2k+1) + f ′′(ck(x))
(x− x2k+1)2

2
(39)

where ck(x) = x2k+1 + t(x− x2k+1), 0 < t < 1.
Obviously, it is required that the function f is at least in C2[a, b].

Integration of equation (39) from x2k to x2k+2 and the use of the second Mean-value
theorem leads to:∫ x2k+2

x2k

f(x)dx = 2hf(x2k+1) + f
′′
(ck)

∫ x2k+2

x2k

(x− x2k+1)2

2
dx(40)

where ck is a point in (x2k, x2k+2). One easily verifies that the integrals of odd powers
of (x − x2k+1) in (39) cancel out, with only the integrals of even powers contributing
to the final result, thus yielding:

I ′k = Mk + f ′′(ck)
h3

3
(41)
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Summing up (41) over k yields:

I(a, b) =
m−1∑
k=0

I ′k =
m−1∑
k=0

Mk +
h3

3

m−1∑
k=0

f ′′(ck) = M(h) +
h3

3

m−1∑
k=0

f ′′(ck).

Using the intermediate value theorem, one has:

m−1∑
k=0

f ′′(ck) = mf ′′(d) =
b− a

2h
f”(d), d ∈ (a, b)

and therefore, noting that the length of the interval of integration is

nh = (2m)h = b− a

the following result is reached:

I = I(a, b) = M(h) +
(b− a)

6
f ′′(d)h2(42)

Proposition 3 Let f be a function in C2[a, b], interpolating the set of data Dn where
n = 2m. Then

I =

∫ b

a

f(x)dx = M(h) +O(h2)

where

M(h) = 2h
m−1∑
k=0

f(x2k+1)

Furthermore, when h = b−a
2l

, l = 0, 1, 2, ..., it can be proved that:

I = I(a, b) = M(h) + µ1h
2 + µ2h

4 + ..+ µjh
2j + ...,(43)

where the sequence {µj} is independent from h, and depends on the function f (and
its derivatives) at a and b.

4.2 The Trapezoidal Rule

Unlike the composite Midpoint rule that is only applicable when the number of intervals is
even, the composite Trapezoid rule can be used in all cases.

1. The formulae
A simple geometric argument consists in approximating the surface between the x-axis,
the curve y = f(x) and the vertical lines x = xk and x = xk+1 by the area of the rect-
angular trapezoid, which vertices are (xk, 0), (xk+1, 0), (xk, f(xk)) and (xk+1, f(xk+1)).
This leads first to the simple Trapezoidal rule, given by:

Ik =

∫ xk+1

xk

f(x)dx ≈ Tk =
h

2
(f(xk) + f(xk+1)),(44)
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and subsequently to the composite Trapezoid rule given by:

I ≡ I(a, b) =

∫ b

a

f(x)dx ≈ T (h) =
h

2
Σn−1
k=0(f(xk) + f(xk+1)),(45)

More precisely: T (h) = h
2

(y0 + 2(y1 + ...+ yn−1) + yn)

Remark 5 Note that when n = 2m, then:

I ≈ T (2h) = Σm−1
k=0 T

′

k = Σm−1
k=0 h(f(x2k + f(x2k+2))

On the other hand:
M(h) = Σm−1

k=0 Mk = 2hΣm−1
k=0 f(x2k+1)

Considering then (T (2h) +M(h))/2, one gets:

T (h) =
1

2
(T (2h) +M(h))(46)

To prove this result note that:

T (2h) +M(h) = h
m−1∑
k=0

(f(x2k) + f(x2k+2)) + 2f(x2k+1) =

= h
m−1∑
k=0

[f(x2k) + f(x2k+1)] + [f(x2k+1) + f(x2k+2)]

= h
n−1∑
k=0

(f(xk) + f(xk+1)) = 2T (h).

This result is summarized in:

Proposition 4 For n = 2m, T (h) = 1
2
(T (2h) +M(h)).

2. Error analysis
Note that:

Tk =

∫ xk+1

xk

pk,k+1(x)dx(47)

where pk,k+1(x) = yk + [xk, xk+1](x−xk), is the linear interpolation polynomial to f(x)
at xk and xk+1. Furthermore, it is well known (section 4.5) that:

f(x) = pk,k+1(x) +
1

2
(x− xk)(x− xk+1)f ′′(c(x)),
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with c(x) ∈ (xk, xk+1) depending continuously on x. By integration of this identity
over the interval (xk, xk+1) and use of the second Mean Value Theorem with (47), one
gets:

Ik = Tk +
f ′′(ck)

2

∫ xk+1

xk

(x− xk)(x− xk+1) dx

leading to:

Ik = Tk −
h3

12
f ′′(ck),(48)

where ck ∈ (xk, xk+1). Summing up (48) over k, one gets an expression for the com-
posite Trapezoidal rule error term (likewise for the Midpoint rule in (42)):

I = I(a, b) =
n−1∑
k=0

Ik = T (h)− (b− a)

12
f ′′(c)h2(49)

where c ∈ (a, b).

Proposition 5 Let the data Dn = {(xk, f(xk))|k = 0, 1, ..., n}, be a set representing a
function f in C2([a, b]), then:

I =

∫ b

a

f(x)dx = T (h) +O(h2),

with:

T (h) =
h

2
Σn−1
k=0(f(xk) + f(xk+1)).

On the other hand, as in (43), can prove that when h = b−a
2l

, l = 0, 1, 2, ...:

I = I(a, b) = T (h) + τ1h
2 + τ2h

4 + ..+ τjh
2j + ...,(50)

where the sequence {τj} depends on the function f (and its derivatives) at a and b and
consequently independent from h.

4.3 Trapezoid Rule / Richardson’s extrapolation: Romberg for-
mulae

1. The formulae
On the basis of (50), we can implement Richardson’s extrapolation, by writing this
equation simultaneously for h and h

2
. Specifically, in that case we obtain:

(a) I = T (h) + τ1h
2 + τ2h

4 + ...+ τjh
2j + ...

(b) I = T
(
h
2

)
+ τ1

(
h
2

)2
+ τ2

(
h
2

)4
+ ...+ τj

(
h
2

)2j
+ ...

18



In order to eliminate the dominant term of the error, by performing the algebraic
operation 4(b)− (a), we obtain:

3I = 4T

(
h

2

)
− T (h) +O(h4)

and therefore:

I =
4T
(
h
2

)
− T (h)

3
+ t2h

4 + t3h
6 + ...(51)

where the sequence {ti} is independent of h.
Defining the first Romberg integration operator as:

R1(h/2) =
4T
(
h
2

)
− T (h)

3
or equivalently R1(h) =

4T (h)− T (2h)

3
(52)

equation (51) provides then an approximation to the integral I(a, b) of order O(h4)
verifying:

I = R1(h) +O(h4)(53)

In a similar way, we can derive a second Romberg integration formula by writing again
the equation above simultaneously in terms of h and h

2
:

(a) I = R1(h) + t2h
4 + t3h

6 + ...

(b) I = R1
(
h
2

)
+ t2

(
h
2

)4
+ t3

(
h
2

)6
+ ...

Performing the algebraic operation 16(b)− (a) yields:

15I = 16R1

(
h

2

)
−R1(h) +O(h6)

And therefore:

I =
16R1

(
h
2

)
−R1(h)

15
+ t3h

6 + t4h
8 + ...(54)

where the sequence {ti} is independent of h.
Defining the second Romberg integration operator as:

R2(h) =
16R1(h)−R1(2h)

15
(55)

equation (5.52) is then equivalent to:

I = R2(h) +O(h6)(56)

As for differentiation, this process can be repeated.

The first Romberg extrapolation formulae obtained based on the Composite Trapezoid
Rule are as follows:
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Proposition 6 Let f belong to C∞[a, b]

I = I(a, b) =

∫ b

a

f(x)dx =


R1(h) +O(h4)
R2(h) +O(h6)
R3(h) +O(h8)
...

Where R1(h) = 22T (h)−T (2h)
22−1

; R2(h) = 24R1(h)−R1(2h)
24−1

; R3(h) = 26R2(h)−R2(2h)
26−1

, and in

general: Rk(h) = 22kRk−1(h)−Rk−1(2h)
22k−1

,

2. Simpson’s Rule
Simpson’s Rule is applicable only if the number of subintervals is even (n=2m). It can
be derived from a linear combination of the Midpoint Rule and the Trapezoid Rule.
Specifically, the simple integration Simpson’s Rule is defined as follows

Sk =
2

3
Mk +

1

3
Tk(57)

Consequently:

Sk =
2

3
[f(x2k+1)2h] +

1

3
[
f(x2k) + f(x2k+1)

2
2h]

leading to:

I ′k =

∫ x2k+2

x2k

f(x)dx ≈ Sk =
h

3
(f(x2k) + 4f(x2k+1) + f(x2k+2))(58)

Summing up this last equation over k, one derives the Composite Simpson’s Rule,
namely:

I = I(a, b) = Σm−1
k=0 Sk = Σm−1

k=0 (
2

3
Mk +

1

3
Tk) =

2M(h) + T (2h)

3
(59)

Referring to Proposition (4), since M(h) = 2T (h)− T (2h), then one concludes that:

S(h) =
4T (h)− T (2h)

3
= R1(h)

meaning that Simpson’s Composite Numerical Integration formula is equivalent to the
first Romberg Trapezoidal Extrapolation formula.
Thus, the following error estimate is obviously deduced:

Proposition 7 Let f be a function in C4[a, b], interpolating the set of data Dn. Then:

I = I(a, b) = S(h) +O(h4)
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Remark 6 The error estimate of the Composite Simpson’s rule can also be derived by
noting that

Sk =

∫ x2k+2

x2k

p2k,2k+1,2k+2(x)dx

where p2k,2k+1,2k+2(x) is the quadratic interpolating polynomial to f(x) at x2k, x2k+1, x2k+2.
Specifically one proves that:

Ik = Sk −
1

90
f (4)(ck(x))h5.

leading therefore to:

I = S(h)− (b− a)
1

180
f (4)(c)h4.

where S(h) = (y0 + 4
∑m−1

k=0 y2k+1 + 2(
∑m−1

k=1 y2k) + y2m)h
3

In a consistent manner with the Composite Midpoint and Trapezoidal Rules, one also
has when h = b−a

2l
, l = 0, 1, 2, ...:

I = I(a, b) = S(h) + s2h
4 + s6h

6 + ....+ sjh
2j + ....

where all the coefficients {si} are independent of h.

In the last part of this chapter, we explore a totally different approach of estimating
definite integrals. We will show that we can use sequences of random numbers for these
approximations, a problem that seemingly has nothing to do with randomness.

5 Monte Carlo Methods and Random Numbers
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PROBLEMS

Numerical Differentiation

1. If φ(h) = L− c1h− c2h
2− c3h

3− ..., then what combination of φ(h) and φ(h/2) should
give an accurate estimate of L ?

2. If φ(h) = L− c1h
1/2 − c2h

2/2 − c3h
3/2 − ..., then what combination of φ(h) and φ(h/2)

should give an accurate estimate of L ?

3. Consider the following table of data associated with some unknown function y = f(x)

i xi yi

0 0.00 1.000
1 0.25 2.122
2 0.50 3.233
3 0.75 4.455
4 1.00 5.566
5 1.25 −1.000
6 1.50 −1.255
7 1.75 −1.800
8 2.00 −2.000

(a) Find an approximation to f ′(0.25) using successively the forward, backward and
central difference approximations if h = 0.25.

(b) Find approximations to f ′(1) using the central difference approximation with
h = 0.25, h = 0.50 then h = 1.00. Improve the results obtained using central
difference Richardson’s extrapolation of the first and second order to approximate
f ′(1), if h = 0.25.

(c) Approximate f ′(0) and f ′(2) with h = 0.25.

(d) Find approximations to f ′′(1) using the forward, backward and central difference
approximations, with h = 0.25. Improve the results obtained using forward dif-
ference Richardson’s extrapolation of the first and second order to approximate
f ′′(1), if h = 0.25.

(e) Find approximations to f ′′′(1.25) using the forward, backward and central differ-
ence approximations, with h = 0.25.
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4. Consider the following table of data for the function f(x)

i xi yi

0 0.000 1.0000000
1 0.125 1.1108220
2 0.250 1.1979232
3 0.375 1.2663800
4 0.500 1.3196170
5 0.625 1.3600599
6 0.750 1.3895079
7 0.875 1.4093565
8 1.000 1.4207355

(a) Use the Central Difference formula to approximate f ′(0.5), followed by Richard-
son’s extrapolation of the 1st and 2nd orders to improve the results. Fill out the
following table:

h ψh(.) ψ
(1)
h (.) ψ

(2)
h (.)

0.5 ×
0.25 × ×
0.125 × × ×

(b) Calculate the 2nd derivative f ′′(0.5), using the Central Difference approximation.
Use Richardson’s extrapolation of the 1st and 2nd orders to improve this result.

(c) Calculate the 3rd derivative f ′′′(1.000), using the Backward Difference approxi-
mation.

5. Based on the set of data of the preceding exercise, use the Forward Difference formula
to approximate f ′(0), followed by Richardson’s extrapolation of the 1st and 2nd orders.
Fill out the following table:

h φh(.) φ
(1)
h (.) φ

(2)
h (.)

0.5 ×
0.25 × ×
0.125 × × ×

Numerical Integration

6. Approximate I =
∫ b
a
f(x) dx based on the set of data given in Exercise 3, using the

Midpoint Rectangular Rule.

7. • Estimate the value of I =
∫ 1

0
(x2 + 1)−1dx by using the composite Midpoint Rule

if the partition points are 0, 1/4, 1/2, 3/4, 1.
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• Find the relative error in this approximation.

• Obtain an upper bound on the Absolute Error of I, if 5 partition points are used.

8. The Bessel function of order 0 is defined by the equation J0(x) = 1
π

∫ π
0
cos(xsinθ)dθ

Approximate J0(1) by the Midpoint Rectangular Rule using 5 equally spaced partition
points, then find an upper bound to the error in this approximation. Give your answer
in terms of A and B, where B = cos

√
2/2.

9. In the Composite Midpoint Rule the nodes should be equally spaced. Establish ”Com-
posite Rectangular Rules” in case the spacing is not unique based on Upper or Lower
Sums to approximate the definite integral.

10. How many equi-spaced partition points should be used, with an error |ε| ≤ 10−4

2
in the

approximation of I =
∫ 1

0
e−x

2
dx using

• The Composite Midpoint Rectangular Rule

• The Composite Trapezoid Rule

11. Compute an approximate value of
∫ 1

0
(x2 + 1)−1dx by using the composite Trapezoid

rule with 3 points. Next determine the error formula and numerically verify an upper
bound on it.

12. Obtain an upper bound on the absolute error using 101 equally spaced points, when
we compute

∫ 6

0
sinx2dx by means of

• the composite Trapezoid rule .

• the composite Midpoint Rectangular rule.

13. How large must n be if the composite trapezoid rule is to estimate
∫ π

0
sinxdx with

error ≤ 10−12 ? Will the estimate be too big or too small ?

14. Prove that if a function is concave downwards, the Trapezoidal Rule underestimates
the integral.

15. Approximate
∫ 2

0
2xdx using the composite trapezoid rule with h = 1/2.

16. Let f(x) = 2x. Approximate
∫ 4

0
f(x)dx by the trapezoid rule using the partition points

0, 2, 4. Repeat by using partition points 0, 1, 2, 3, 4. Now apply Romberg extrapolation
to obtain a better approximation.
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17. Consider the data given in Exercise 3. Fill in the following Tableau, using h0 = 2 .

h T (h) R1(h) R2(h) R3(h)
h0 ×

h0/2 = 1 × ×

h0
4

= 0.5 × × ×

h0
8

= 0.25 × × × ×

18. Compute
∫ 1

0
(1 + x2)−1dx by Simpson’s Rule using 3 then 5 partition points. Compare

with the true solution.

19. Find an approximate value of
∫ 2

1
x−1dx using composite Simpson’s Rule with h = 0.25.

Give a bound on the error.

20. The Bessel function of order 0 is defined by the equation J0(x) = 1
π

∫ π
0
cos(xsinθdθ)dx

• Approximate J0(1) by the Trapezoid Rule using 3 equally spaced partition points,
then find an upper bound to the error in this approximation. Give your answer
in terms of A and B, where A = cos1 and B = cos

√
2/2.

• Apply Romberg extrapolation of 1st order to obtain a better approximation to
J0(1).

21. In the Composite Trapezoid Rule approximating
∫ b
a
f(x)dx, the spacing need not be

uniform. If hi = xi+1 − xi and a = x0 < x1 < ... < xn = b, establish the Composite
Trapezoid Rule Formula, then find an Upper Bound for the error term in this approx-
imation.
Hint: On the interval [xk, xk+1], f(x) = d

dx
(Tk) + 1

2
(x − xk)(x − xk+1)f”(c(x)) where

c(x) ∈ I.

22. Given some sequence of n random numbers, use the Monte Carlo method to estimate
Fn =

∫ 1

0
4
√

1− x2 dx as a function of n. How many trials are needed to determine Fn
up to 2 decimal places ?

23. Let f(x) =
√
x. Use the Monte Carlo method to compute an approximation of I =∫ 4

0
f(x) dx using 10 random numbers. Find the relative error in this approximation.

24. Let f(x) =
√
x+
√
x. Use the Monte Carlo method to compute an approximation of

I =
∫ 4

0
f(x) dx using 10 random numbers.
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25. Let V =
∫ 5/4

0

∫ 5/4

0
(
√

4− x2 − y2) dydx.
Use the Monte Carlo simulation with successively n = 102, 103, 104, to approximate V.
Find the relatie error in each case if the exact value of V is 2.66905414.
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6 Appendix: Error expression for the Mid-point rule

when h = b−a
2l

For the purpose of applying Richardson’s extrapolation (41) can be used in its infinte series
expansion form.. Let h0 = (b− a). Then one has for m = (a+ b)/2, M(h0) = h0f(m),

I = M(h0) + f (2)(m)
h3

0

24
+ ...+ f (2j)(m)

h2j+1
0

4j(2j + 1)!
+ ...

which is equivalent to:
I = M(h0) + h0Σj≥1γjf

(2j)(m)h2j
0 ,(60)

Similarly to (22), there exists a sequence of universal constants {ai : i = 1, 2, ...}, such that:

f (2j)(m) =
f (2j−1)(b)− f (2j−1)(a)

2h0

+
∞∑
i=1

aif
(2j+2i)(m)h2i

0 .(61)

Combining (60) with (61), one deduces:

I = M(h0) + Σ∞j=1µjh
2j
0 ,(62)

where:

µj = (

j∑
i

γj−ii )[f (2j−1)(b)− f (2j−1)(a)],

and the sequence γli defined by the recurence relations:{
γ0
j = γj, (63.1)

γlj =
∑j−1

i=1 γ
l−1
i aj−1, l ≥ 1. (63.2)

(63)

Let

νj =

j∑
i

γj−ii .

Then (62) is equivalent to:

I = M(h0) + Σ∞j=1νj(f
(2j−1)(b)− f (2j−1)(a))h2j

0 .(64)

For h = h0
2

, let I1 =
∫ m
a
f(x)dx and I2 =

∫ b
m
f(x)dx with M1(h0/2) and M2(h0/2), re-

spectively their approximations using the Mid-point rule. Obviously, from (64), we have
successively:

I1 = M1(h0/2) + Σ∞j=1νj(f
(2j−1)(m)− f (2j−1)(a))(h0/2)2j

and
I2 = M2(h0/2) + Σ∞j=1νj(f

(2j−1)(b)− f (2j−1)(a))(h0/2)2j.

27



Adding up these 2 equations, lead to:

I = I1 + I2 = M1(h0/2) +M2(h0/2) + Σ∞j=1νj(f
(2j−1)(b)− f (2j−1)(a))(h0/2)2j,

which is equivalent to:

I = M(h0/2) + Σ∞j=1νj(f
(2j−1)(b)− f (2j−1)(a))(h0/2)2j,(65)

i.e. (62) with h0, replaced by h0/2. This argument can be repeated proving (62) with h0,
replaced by h0/2

l, l ≥ 0. This result can be generalized to both trapezoid and Simpson’s
rules and is of major importance for the implementation of Romberg Integration.
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