
Chapter 4

Polynomial Interpolation and
Splines Fitting

4.1 Definition of Interpolation

Consider a set D
n

of n+ 1 data points in the (x, y) plane:

(4.1) D
n

= {(x
i

, y
i

)| i = 0, 1 ..., n; n 2 N with x
i

6= x
j

for i 6= j}.

We assume that D
n

represents partially the values of a function y = f(x),
i.e.:

(4.2) f(x
i

) = y
i

8 i = 0, 1 ..., n

Our basic objective in this chapter is to construct a continuous function r(x)
that “represents” f(x) (or the empirical law f(x) behind the set of data D

n

).
Thus r(x) would represent f(x) for all x, in particular for x 62 the set of
nodes {x

0

, x
1

, ..., x
n

}. Such a function r(x) is said to interpolate the set
of data D

n

if it satisfies the interpolation conditions:

(4.3) r(x
i

) = y
i

8 i = 0, 1 ..., n

i.e. fitting the function f(x) at the nodes {x
i

}, .
Several kinds of interpolation may be considered by choosing r(x) to be a
polynomial function, a rational function or even a trigonometric one. The
most natural is to consider polynomial or piecewise polynomial interpolation
(spline functions) , as polynomial functions are the simplest in reproduc-
ing the basic arithmetic (floating-point) operations of addition, subtraction,
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144 N. Nassif and D. Fayyad

multiplication and division {+,�,⇥,÷}. Consistently, we only analyze in
this chapter polynomial and spline interpolations. Such type of inter-
polation is referred to as Lagrange interpolation.

4.2 General Lagrange Polynomial Interpolation

For simplicity, we assume that the set of data D
n

is given as a natural
increasing sequence of x-values, i.e.

x
0

< x
1

< ... < x
n

.

Let also h
i

= x
i

� x
i�1

, 8i � 1. We state now the basic Lagrange Interpo-
lation theorem.

Theorem 4.1. There exists a unique polynomial of degree less than or equal
to n:

p
n

(x) = p
01...n

(x)

interpolating D
n

, i.e such that p
n

(x
i

) = y
i

, 8i = 0, 1, ..., n.

Proof. The proof of this theorem is based on the Lagrangian cardinal
basis associated with D

n

that is given by:

L
n

= {l
i

(x) : 0  i  n}

where the cardinal functions l
i

are special polynomials of degree exactly
n in P

n

(P
n

being the set of all polynomials of degree less than or equal to
n). They are defined as follows, 8i = 0, ..., n:
(4.4)

l
i

(x) =

Q

0j 6=in

(x� x
j

)
Q

0j 6=in

(x
i

� x
j

)
=

(x� x
0

)(x� x
1

)...(x� x
i�1

)(x� x
i+1

)...(x� x
n

)

(x
i

� x
0

)(x
i

� x
1

)...(x
i

� x
i�1

)(x
i

� x
i+1

)...(x
i

� x
n

)

Once the cardinal functions (4.4) are available, we can interpolate any func-
tion f using Lagrange form of the interpolation polynomial:

(4.5) p
01...n

(x) =
n

X

i=0

l
i

(x)f(x
i

).

Obviously, the following properties are satisfied by a Lagrangian basis func-
tion, 8i, j = 0, 1, . . . , n:

- l
i

(x
j

) = �
ij

=

⇢

0 if i 6= j
1 if i = j
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- p
01...n

(x
i

) = y
i

The definition of the Lagrange polynomial above is enough to establish the
existence part of Theorem 4.1.
As for obtaining uniqueness of such a polynomial p

01...n

, we proceed by
contradiction by supposing the existence of another polynomial q(x) 2 P

n

,
claiming to accomplish what p(x) does; that is q(x) satisfies as well the
interpolation conditions q(x

i

) = y
i

for 0  i  n. The polynomial:

(p
01...n

(x)� q(x))

is then of degree at most n, and takes on the value 0 at all nodes x
0

, x
1

, . . . , x
n

.
Recall however that a non-zero polynomial of degree n can have at most n
roots, implying that (p

01...n

(x) � q(x)) = 0. One concludes therefore that
p
01...n

(x) = q(x) 8x, which establishes the uniqueness of p
01...n

(x).

Remark 4.1. It is obvious from equation (4.5) that:

p
01...n

(x) = p
i

0

i

1

...i

n

(x)

for any permutation {i
0

, i
1

, ..., i
n

} of the set of indices {0, 1, ..., n}.

Example 4.1. Write out the cardinal functions and the corresponding La-
grange interpolating polynomial based on the following data:

D
2

= { (1/4,�1), (1/3, 2), (1, 7)}

Using equation (4.4), we have:

l
0

(x) =
(x� 1

3

)(x� 1)

(1
4

� 1

3

)(1
4

� 1)
= 16(x� 1

3
)(x� 1)

l
1

(x) =
(x� 1

4

)(x� 1)

(1
3

� 1

4

)(1
3

� 1)
= �18(x� 1

4
)(x� 1)

l
2

(x) =
(x� 1

3

)(x� 1

4

)

(1� 1

3

)(1� 1

4

)
= 2(x� 1

3
)(x� 1

4
)

The interpolating polynomial in Lagrange’s form is therefore given by:

p
012

(x) = �36(x�1

4
)(x�1)�16(x�1

3
)(x�1)+14(x�1

3
)(x�1

4
) = �38x2+

349

6
x�79

6

This form of the polynomial might be useful in computing f(x) in the vicinity
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of the nodes 1/3, 1/4, 1.

Example 4.2. Consider the following table of data associated with the func-
tion f(x) = ln(x).

i xi yi

0 1.0 0
1 1.5 0.17609
2 2.0 0.30103
3 3.0 0.47712
4 3.5 0.54407
5 4.0 0.60206

Use Lagrange polynomials of orders 1 then 2 to approximate f(1.2), noting
that the exact value is ln(1.2) = 0.0791812460476480.

- Linear Interpolation based on the points {x
0

, x
1

}= {1.0, 1.5}, where
l
0

(.) and l
1

(.) 2 P
1

. Using (4.5), one has:

p
01

(x) = y
0

l
0

(x) + y
1

l
1

(x) = 0
x� 1.5

1.0� 1.5
+ 0.17609

x� 1.0

1.5� 1.0

Thus p
01

(1.2) = 0.070436, and the relative error iin this approximation
is 6.136716⇥ 10�1

- Quadratic interpolation based on the points {1.0, 1.5, 2.0}, where
l
0

(.), l
1

(.) and l
2

(.) 2 P
2

.

p
012

(x) = y
0

l
0

(x) + y
1

l
1

(x) + y
2

l
2

(x) = 0
(x� 1.5)(x� 2)

(1.0� 1.5)(1.0� 2)
+

+0.17609
(x� 1.0)(x� 2)

(1.5� 1.0)(1.5� 2)
+ 0.30103

(x� 1.0)(x� 1.5)

(2� 1.0)(2� 1.5)

Thus p
012

(1.2) = 0.076574, and the relative error is now 3.292757 ⇥
10�2.

Remark 4.2. Note that Lagrange’s formula is not computationally practical
in the sense that computing p

01...k

(x) with k < n, cannot be obtained from
p
01...k�1

(x). The cardinal functions of the latter are polynomials of degree
exactly k � 1 in P

k�1

, while those of the former are polynomials of degree
exactly k in P

k

. Thus, after computing the Lagrange cardinal functions for
p
01...k�1

(x), one has to compute a totally distinct set of cardinal functions
for p

01...k

(x).
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This motivates looking for recurrence formulae to the Lagrange interpolating
polynomial.

4.3 Recurrence Formulae

These recurrence formulae are obtained through relations between two consecutive-
order interpolation polynomials, specifically and for k � 1:

• Consider first p
012..k

2 P
k

and p
012..k�1

2 P
k�1

. As

p
012..k

(x
i

)� p
012..k�1

(x
i

) = 0, 8 i = 0, 1, ..., k � 1

This implies that:

(4.6) p
012..k

(x)� p
012..k�1

(x) = C(x� x
0

)(x� x
1

)...(x� x
k�1

)

Note that C is a constant as the right hand side polynomial is exactly
of degree k.

• In a similar way considering now p
012..k

2 P
k

and p
12..k

2 P
k�1

, one
obtains:

(4.7) p
012..k

(x)� p
12..k

(x) = C
0
(x� x

1

)...(x� x
k�1

)(x� x
k

).

It is clear that C = C
0
as both constants are the coe�cient of xk in

p
012..k

.

(4.6) and (4.7) constitute the basis for Neville’s and Newton’s recurrence
formulae, as shown hereafter.

4.3.1 Neville’s Formula

Given that C = C
0
, the algebraic operation:

(x� x
k

)⇥(4.6) - (x� x
0

)⇥(4.7)

yields:

(x
0

� x
k

)p
01...k�1 k

(x) = (x� x
k

)p
01...k�1

(x)� (x� x
0

)p
12...k�1 k

(x).

Hence one reaches Neville’s formula (also called Aitken-Neville’s), given by:

(4.8) p
01...k�1 k

(x) =
(x� x

0

)p
12...k�1 k

(x)� (x� x
k

)p
012...k�1

(x)

x
k

� x
0

, k � 1.
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A more general Neville’s recurrence formulae can be concluded. Specif-
ically, for any i 2 {0, 1, ..., n}. :

• Base statement: p
i

(x) = y
i

, i = 0, 1, ..., n

• Recurrence statement:
(4.9)

p
i i+1 ... i+k

(x) =
(x� x

i

)p
i+1 i+2... i+k

(x)� (x� x
i+k

)p
i i+1 ... i+k�1

(x)

x
i+k

� x
i

,

with
0  i < i+ k  n.

Based on the set of data D
n

in (5.1) and using the formulas above repeat-
edly, we can create an array of interpolating polynomials 2 P

n

, where each
successive polynomial can be determined from 2 adjacent polynomials in the
previous column:

i x
i

p
i

(x) p
i,i+1

(x) p
i,i+1,i+2

(x) · · · p
i,i+1,...,i+n

(x)
0 x

0

p
0

(x)
1 x

1

p
1

(x) p
0,1

(x)
2 x

2

p
2

(x) p
1,2

(x) p
0,1,2

(x)
3 x

3

p
3

(x) p
2,3

(x) p
1,2,3

(x)
4 x

4

p
4

(x) p
3,4

(x) p
2,3,4

(x) ...
... ... ... ... ... ... ...
n x

n

p
n

(x) p
n�1,n

(x) p
n�2,n�1,n

(x) ... p
0,1,...,n

(x)

For example,

p
01

(x) =
(x� x

0

)p
1

(x)� (x� x
1

)p
0

(x)

x
1

� x
0

p
123

=
(x� x

1

)p
23

(x)� (x� x
3

)p
12

(x)

x
3

� x
1

Remark 4.3. Neville’s recurrence expressions of the interpolating polyno-
mial can be easily programmed. The consequent algorithms can be written
either in a recursive or iterative form.

In what follows, we write a recursive algorithm for Neville’s formula leaving
it as an exercise to transform it into an iterative one.

Algorithm 4.1. Algorithm for Neville’s formula(Recursive version)
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function [ z ]= Neville(x, y, s)

% Input data vectors x=[x1,x2,...,xk] and y=[y1,y2,...,yk]

% s : value (or vector) at which we seek the interpolation

% Output z=p_{12...k}(s)=p(s)

k = length(x);

if k=1

z=y;

% z1=p_{12...(k-1)}(s) ; z2=p_{2...k}(s)

% z= [(s-x1)*z2 - (s-xk)*z1] / (xk-x1)

else

z1= Neville(x(1:k-1), y(1:k-1) , s);

z2= Neville(x(2:k), y(2:k) , s);

z= ((s-x(1))*z2 - (s-x(k))*z1)/(x(k)-x(1));

end

4.3.2 Newton’s form for the interpolation polynomial

As for Neville’s formula, we proceed with (4.6) by rewriting it in a more
general recurrence form as follows:

(4.10) p
i i+1...,i+k

(x) = p
i i+1...i+k�1

(x) + C(x� x
i

)...(x� x
i+k�1

),

with
0  i < i+ k  n.

Newton’s formula is obtained by determining a proper expression for the
constant C as a function of the data D

k

= {(x
i

, y
i

)|i = 0, 1, ..., k}. Note
that such constant can be computed by setting x = x

i+k

in (4.10), so that:

y
i+k

= p
i i+1...i+k�1

(x
i+k

) + C(x
i+k

� x
i

)...(x
i+k

� x
i+k�1

),

and therefore:

C = C(x
i

, x
i+1

, ..., x
i+k

; y
i

, y
i+1

, ..., y
i+k

) =
y
i+k

� p
i i+1...i+k�1

(x
i+k

)

(x
i+k

� x
i

)...(x
i+k

� x
i+k�1

)
.

For k = 1, this gives:

(4.11) C = C(x
i

, x
i+1

; y
i

, y
i+1

) =
y
i+1

� y
i

x
i+1

� x
i

.
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Define then

[x
i

, x
i+1

] =
y
i+1

� y
i

x
i+1

� x
i

as the first order divided di↵erence associated with {x
i

, x
i+1

}, so that (4.10)
is expressed as follows:

(4.12) p
i,i+1

(x) = p
i

(x) + [x
i

, x
i+1

](x� x
i

)

which is Newton’s formula of order 1. More generally, we may define divided
di↵erences of any order k � 1, through a recurrence process as follows:

Definition 4.1. Given the set of data

D
n

= {(x
i

, y
i

)|i = 0, 1, ..., n}, x
i

6= x
j

for i 6= j.

Let [x
i

] = y
i

, i = 0, 1, ..., n. Then, for 0  i < i + k  n, the kth order
divided di↵erence is given through the recurrence formula:

(4.13) [x
i

, x
i+1

, ..., x
i+k

] =
[x

i+1

, ..., x
i+k

]� [x
i

, x
i+1

, ..., x
i+k�1

]

x
i+k

� x
i

.

Consequently, we prove that the constant C in (4.10) is a kth order divided
di↵erence. This is done in the following proposition.

Theorem 4.2. Let 0  i < i+ k  n. Let

p
i i+1...i+k

(x) = p
i i+1...i+k�1

(x) + C(x� x
i

)...(x� x
i+k�1

),

is the interpolating polynomial based on the nodes {x
i

, ..., x
i+k

}, as defined
in (4.6). Then, the constant C is the kth order divided di↵erence

C = [x
i

, x
i+1

, ..., x
i+k

] =
[x

i+1

, ..., x
i+k

]� [x
i

, x
i+1

, ..., x
i+k�1

]

x
i+k

� x
i

Proof. To obtain this result we use a mathematical induction process on k.
Clearly, (4.12) indicates that the result is true for k = 1.
Assuming now that the proposition is correct for all j  k�1 with i+j < n,
then, one writes on the basis of the induction hypothesis for j = k � 1,
successively:

p
i...i+k�1

(x) = p
i...i+k�2

(x) + [x
i

, x
i+1

, ...x
i+k�1

](x� x
i

)...(x� x
i+k�2

)

where [x
i

, x
i+1

, ...x
i+k�1

] is the coe�cient of xk�1 in the polynomial p
i...i+k�1

(x)
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and

p
i+1...i+k

(x) = p
i+1, ..., i+k�1

(x) + [x
i+1

, ..., x
i+k

](x� x
i+1

)...(x� x
i+k�1

)

where [x
i+1

, ..., x
i+k

] is the coe�cient of xk�1 in the polynomial p
i+1...i+k

(x).
Using now Neville’s formula, one has:

p
i...i+k

(x) =
(x� x

i

)p
i+1...i+k

(x)� (x� x
i+k

)p
i...i+k�1

(x)

x
i+k

� x
i

.

By equating the coe�cients of xk on both sides of this identity one has:

C =
[x

i+1

, ..., x
i+k�1

, x
i+k

]� [x
i

, x
i+1

, ..., , x
i+k�1

]

x
i+k

� x
i

,

which is the targeted result of the theorem.

As a consequence of this theorem, we may write now Newton’s formula for
Lagrange interpolating polynomial as follows: for i < i+ k  n:
(4.14)
p
i i+1...i+k�1 i+k

(x) = y
i

+[x
i

, x
i+1

](x�x
i

)+...+[x
i

, x
i+1

, ..., x
i+k

](x�x
i

)...(x�x
i+k�1

).

or equivalently as:
(4.15)

p
i i+1...i+k�1 i+k

(x) = y
i

+
k

X

j=1

[x
i

, ..., x
i+j

](x� x
i

)...(x� x
i+j�1

) =
k

X

j=0

[x
i

, ..., x
i+j

]
i�1

Y

j=0

(x�x
i+j

)

More specifically:

p
01...n

(x) = y
0

+ [x
0

, x
1

](x� x
0

) + [x
0

, x
1

, x
2

](x� x
0

)(x� x
1

) + ...

...+ [x
0

, x
1

, x
2

, ..., x
n

](x� x
0

)(x� x
1

)...(x� x
n�1

)

Remark 4.4. Note that, as expressed in (4.10), Newton’s formula of the in-
terpolating polynomial is built up in steps, in the sense that once p

i i+1...i+k�1

(x)
is found reproducing part of the data, determining p

i i+1...i+k

(x), necessitates
the computation of one new divide di↵erence coe�cient only.
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4.3.3 Construction of Divided Di↵erences and Implementa-
tion of Newton’s formula

Let {i
0

, i
1

, . . . , i
k

} of be any permutation of the set of integers {i, i +
1, . . . , i+k}. Based on the uniqueness property of the interpolating polyno-
mials:

p
i i+1...i+k�1 i+k

(x) = p
i

0

i

1

...i

k�1

i

k

(x)

and consequently the kth order divided di↵erences [x
i

, x
i+1

, ..., x
i+k

] and
[x

i

0

, x
i

1

..., x
i

k�1

, x
i

k

] representing respectively the (same) coe�cient of xk in
the two polynomials above, are equal. This leads to the following invariance
property satisfied by divided di↵erences:

Theorem 4.3. Let {i
0

, i
1

, . . . , i
k

} of be any permutation of the set of inte-
gers {i, i+ 1, . . . , i+ k}. Then:

[x
i

, x
i+1

, . . . , x
i+k

] = [x
i

0

, x
i

1

, . . . , x
i

k

]

Obviously, use of Newton’s formula necessitates the computation of divided
di↵erences. As such, constructing divided di↵erences tables associated with
a set of data D

n

= {(x
i

, y
i

)|i = 0, 1, ..., n} is a preliminary step to any
implementation of Newton’s formula. The figure below displays a divided
di↵erence table for the case n = 5.

i xi yi [., .] [., ., .] [., ., ., .] [., ., ., ., .] [., ., ., ., ., .]
0 x

0

y
0

[x
0

, x
1

]
1 x

1

y
1

[x
0

, x
1

, x
2

]
[x

1

, x
2

] [x
0

, x
1

, x
2

, x
3

]
2 x

2

y
2

[x
1

, x
2

, x
3

] [x
0

, x
1

, x
2

, x
3

, x
4

]
[x

2

, x
3

] [x
1

, x
2

, x
3

, x
4

] [x
0

, x
1

, x
2

, x
3

, x
4

, x
5

]
3 x

3

y
3

[x
2

, x
3

, x
4

] [x
1

, x
2

, x
3

, x
4

, x
5

]
[x

3

, x
4

] [x
2

, x
3

, x
4

, x
5

]
4 x

4

y
4

[x
3

, x
4

, x
5

]
[x

4

, x
5

]
5 x

5

y
5

The following MATLAB code takes as input 2 vectors x and y of equal length
and returns the Divided Di↵erence table of the first (n-1)-order divided
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di↵erences, as a lower triangular matrix, using the MATLAB diff operator.

Algorithm 4.2. Constructing a divided di↵erence table

function D = DivDiffTable(x,y)

% D is a lower Triangular matrix

% If x=[x(1),x(2),...,x(n)] is a vector of length n, then :

% diff(x)=[(x(2)-x(1)), (x(3)-x(2)),....,(x(n)-x(n-1))] is a vector of length (n-1)

n=length(x) ;

m=length(y) ;

if m==n

D=zeros(n,n) ;

D(1:n, 1) = y(1:n) ;

Y= D(1:n, 1) ;

for j=2: n

V1=x(1:n-j+1) ; V2=x(j:n) ;

D(j:n, j)= (diff(Y) ./ (V2-V1)’ ) ;

Y=D(j:n, j) ;

end

end

Example 4.3. Create the Divided Di↵erence Table based on the set of data
of Example 4.2 representing the function f(x) = ln(x):

D
5

= {(1, 0) , (1.5, 0.17609) , (2.0, 0.30103) , (3, 0.47712) , (3.5, 0.54407) , (4, 0.60206)}

i xi yi [., .] [., ., .] [., ., ., .] [., ., ., ., .] [., ., ., ., ., .]
0 1.0 0

0.35218
1 1.5 0.17609 �0.1023

0.24988 0.02655
2 2.0 0.30103 �0.0492 �0.006404

0.17609 0.01054 0.001411
3 3.0 0.47712 �0.02813 �0.002172

0.13390 0.00511
4 3.5 0.54407 �0.01792

0.11598
5 4.0 0.60206

Let us consider now approximations of f(x) for values of x first at the top of
the table, for example x = 1.2, then at the middle of the table, as x = 2.5.
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(Note that in general, one can prove that the approximation-error is smaller
when x is centered with respect to the nodes).

1. The 1st interpolating polynomials are successively as follows:
• p

01

(x) = 0.35218(x� 1),
• p

012

(x) = p
01

(x)� 0.1023(x� 1)(x� 1.5),
• p

0123

(x) = p
012

(x) + 0.02655(x� 1)(x� 1.5)(x� 2),
• p

01234

(x) = p
0123

(x)� 0.006404(x� 1)(x� 1.5)(x� 2)(x� 3),
• p

012345

(x) = p
01234

(x)+0.001411(x�1)(x�1.5)(x�2)(x�3)(x�3.5).

As a result, approximations to ln(1.2) = 0.0791812460476248 come as
follows:

p
...

(1.2) Value Relative error
p
01

(x) 0.070436 1.10446⇥ 10�1

p
012

(x) 0.076574 3.2928⇥ 10�2

p
0123

(x) 0.0778484 1.6833⇥ 10�2

p
01234

(x 0.07840171 9.845⇥ 10�3

p
012345

(x) 0.0786821 6.30384⇥ 10�3

2. To get approximations to f(2.5),(using Theorem 4.3), we obtain suc-
cessively linear, quadratic and cubic polynomials as follows:
• p

23

(x) = y
2

+ [x
2

, x
3

](x� x
2

) = 0.30103 + 0.17609(x� 2)
• p

231

(x) = p
23

(x) + [x
2

, x
3

, x
1

](x� x
2

)(x� x
3

)
= p

23

(x) + [x
1

, x
2

, x
3

](x� x
2

)(x� x
3

) = p
23

(x)� 0.0492(x� 2)(x� 3)
• p

2314

(x) = p
231

(x) + [x
2

, x
3

, x
1

, x
4

](x� x
2

)(x� x
3

)(x� x
1

)
= p

231

(x) + [x
1

, x
2

, x
3

, x
4

](x� x
2

)(x� x
3

)(x� x
1

) = p
231

(x) +
0.01054(x� 2)(x� 3)(x� 1.5)
• p

2310

(x) = p
231

(x) + [x
2

, x
3

, x
1

, x
0

](x� x
2

)(x� x
3

)(x� x
1

)
= p

231

(x) + [x
0

, x
1

, x
2

, x
3

](x� x
2

)(x� x
3

)(x� x
1

) = p
231

(x) +
0.02655(x� 2)(x� 3)(x� 1.5)

Another alternative starting with p
23

(x) would be:
• p

234

(x) = p
23

(x) + [x
2

, x
3

, x
4

](x� x
2

)(x� x
3

) = p
23

(x)�
0.02813(x� 2)(x� 3)
• p

2345

(x) = p
234

(x) + [x
2

, x
3

, x
4

, x
5

](x� x
2

)(x� x
3

)(x� x
4

)p
234

(x) +
0.00511(x� 2)(x� 3)(x� 3.5)
• p

2341

(x) = p
234

(x) + [x
2

, x
3

, x
4

, x
1

](x� x
2

)(x� x
3

)(x� x
4

)
= p

234

(x)+[x
1

, x
2

, x
3

, x
4

](x�x
2

)(x�x
3

)(x�x
4

) = p
234

(x)�0.002172(x�
2)(x� 3)(x� 3.5)
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This process can be carried through to obtain higher order interpo-
lation polynomials. The following results are obtained for the approx-
imation of ln(2.5) = 0.39794001:

p
...

(2.5) Value Relative error
p
23

(x) 0.389075 2.227725⇥ 10�2

p
234

(x) 0.3961067 4.6070814⇥ 10�3

p
231

(x) 0.4013733 8.62774435⇥ 10�3

p
2345

(x) 0.3973825 1.4009867⇥ 10�3

p
2341

(x) 0.39874 2.0103315⇥ 10�3

Hence, it appears clear that increasing the degree of the interpolation poly-
nomial does not improve much the approximation of the exact value of f(x).

We may now write an algorithm that implements Newton’s formula using
Algorithm 4.2: DivDiffTable(x,y).

Algorithm 4.3. Program for Newton’s formula

function p=NewtonForm(x,y,X)

%Input: two equally sized vectors x and y of length k

% One vector X of length n

%Output: p(X) based on Newton interpolation formula on the data (x,y)

D=DivDiffTable(x,y);

k=length(x);%(equal to length of y)

n=length(X);X=X(:);

term=ones(n,1);

p=zeros(n,1);

for i=1:k

p=p+D(i,i)*term;

term=term.*(X-x(i));

end

To conclude on recurrence formulae for the Lagrange interpolation polyno-
mial, a rule of thumb would be to use Neville’s formula in case of computer
implementation as it takes only one algorithm to program (Algorithm 4.1).
On the other hand, Newton’s formula requires writing 2 programs: one for
divided di↵erences (Algorithm 4.2) before developing Algorithm 4.3 for a
straightforward evaluation of the interpolation polynomial.
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4.4 Equally spaced Data: Di↵erence Operators

Consider now the set of data D
n

with equidistant x�nodes, i.e.

x
i+1

� x
i

= h, 8i = 0, 1, ..., n� 1.

In this case, we can compute divided di↵erences associated with D
n

by using
the “di↵erence functions” or “di↵erence operators” , based on the
y�data only. Specifically, we make the following definitions:

Definition 4.1. Let Y = [y
0

, y
1

, ..., y
n

], then:

1. �1Y = [�y
0

,�y
1

, ...,�y
n�1

] is the vector of n first order di↵erences
associated with Y , where �y

i

= y
i+1

� y
i

for i = 0, 1..., n� 1.

2. By recurrence, for k = 2, 3, ...n, we may then define the vector of
kth order di↵erences �kY = [�ky

0

,�ky
1

, ...,�ky
n�k

], where �ky
i

=
�k�1y

i+1

��k�1y
i

for i = 0, 1, ..., n� k.

Di↵erence operators are linear in the sense that:

�k(Y + Z) = �kY +�kZ and �k(aY ) = a�kY, a 2 R, k = 2, 3, ...n.

Besides, one easily obtains a relation between divided di↵erences and di↵er-
ences of all orders as shown below.

Theorem 4.4. Let D
n

be a set of data as defined in (4.1), where the x-nodes
are equally spaced with x

i+1

� x
i

= h, 8i = 0, 1, ..., n � 1. Then for all k
where 1  k  with i+ k  n:

(4.16) [x
i

, x
i+1

, ..., x
i+k

] =
�ky

i

hkk!

Proof. The proof is done by induction on k. After verifying the result
for k = 1, assume that it is true for 1, ..., k � 1, i.e.:

[x
i

, x
i+1

, ..., x
i+k�1

] =
�k�1y

i

hk�1(k � 1)!
.

Since,

[x
i

, x
i+1

, ..., x
i+k

] =
[x

i+1

, ..., x
i+k

]� [x
i

, x
i+1

, ..., x
i+k�1

]

(x
i+k

� x
i

)
,
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then:

[x
i

, x
i+1

, ..., x
i+k

] =
�k�1y

i+1

��k�1y
i

hk�1(k � 1)!(x
i+k

� x
i

)
=

�k�1y
i+1

��k�1y
i

hk�1(k � 1)! kh
.

that reaches the required result.

Based on the theorem above and in case of equally spaced data, Newton’s
interpolating polynomial is expressed as follows::
(4.17)

p(x) = y
0

+
�y

0

1!h
(x�x

0

)+
�2y

0

2!h2
(x�x

0

)(x�x
1

)+· · ·+�ny
0

n!hn
(x�x

0

)(x�x
1

) . . . (x�x
n�1

)

where it is understood that p(x) = p
012...n

(x).

Remark 4.5. Note the resemblance of this formula with that of Taylor’s
formula for a function f(x) where the nth degree polynomial representing
f(x) is given by:

q(x) = f(x
0

) + f
0
(x

0

)(x� x
0

) + ....+
f (n)(x

0

)

n!
(x� x

0

)n

This remark will be exploited in Chapter 5 when approximating derivatives

such as f (k)(x
0

) by kth order di↵erences �

k

f(x

0

)

h

n

.
The result of the above theorem allows us therefore to compute divided
di↵erence tables by simply first computing di↵erences as displayed in the
following table:
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i xi yi � �2 �3 · · · �n

0 x
0

y
0

�y
0

= y
1

� y
0

...
...

1 x
1

y
1

�2y
0

= �y
1

��y
0

�y
1

= y
2

� y
1

�3y
0

= �2y
1

��2y
0

2 x
2

y
2

�2y
1

= �y
2

��y
1

�y
2

= y
3

� y
2

...

3 x
3

y
3

...
...

... �ny
0

...
...

...
...

...

n� 2 x
n�2

y
n�2

...
�y

n�2

= y
n�1

� y
n�2

n� 1 x
n�1

y
n�1

�2y
n�2

= �y
n�1

��y
n�2

�y
n�1

= y
n

� y
n�1

n x
n

y
n

...
...

Algorithm 4.4. Constructing a di↵erence table
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Example 4.4. The following set of data D
4

is associated with 0-th order
Bessel’s function of the first kind.

i xi yi

0 1.0 0.7651977
1 1.3 0.6200860
2 1.6 0.4554022
3 1.9 0.2818186
4 2.2 0.1103623

Since the x-data are equally space with h = 0.3, the di↵erences table can be
easily constructed out of this data:

i xi yi � �2 �3 �4

0 1.0 0.7651977
�y

0

= �0.1451117
1 1.3 0.6200860 �2y

0

= �0.0195721
�y

1

= �0.1646838 �3y
0

= 0.0106723
2 1.6 0.4554022 �2y

1

= �0.0088998 �4y
0

= 0.0003548
�y

2

= �0.1735836 �3y
1

= 0.0110271
3 1.9 0.2818186 �2y

2

= 0.0021273
�y

3

= �0.1714563
4 2.2 0.1103623

Using this table, we may subsequently write any of the interpolation poly-
nomials reproducing data in D

4

. For example:

p
234

(x) = y
2

+ �y

2

0.3

(x� x
2

) + �

2

y

2

(0.3)

2

2!

(x� x
2

)(x� x
3

)

= 0.4554022� 0.1735836

0.3

(x� 1.6) + 0.0021273

(0.3)

2

(x� 1.6)(x� 1.9)

p
231

(x) = p
23

(x) + [x
2

, x
3

, x
1

](x � x
2

)(x � x
3

) = p
23

(x) + [x
1

, x
2

, x
3

](x �
x
2

)(x� x
3

)

= p
23

(x) + �

2

y

1

(0.3)

2

2!

(x� x
2

)(x� x
3

) = p
23

(x)� 0.0088998

(0.3)

2

2!

(x� 1.6)(1� 1.9)

4.5 Errors in Polynomial Interpolation

When a function f is approximated on an interval [a, b] = [x
0

, x
n

] by means
of an interpolating polynomial p

n

, it is naturally expected that the function
be well approximated at all intermediate points between the nodes, and that
as the number of nodes increases, this agreement will become more and more
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accurate. Nevertheless, this expectation is wrong and incorrect.
A theoretical estimate of the error is derived in ([20], page 189) and leads
to the following result:

Theorem 4.5. Let f be a function in Cn+1[a, b], and p
n

the Lagrange poly-
nomial of degree at most n, that interpolates f based on the set of data D

n

.
There exists some point c 2 (a, b) such that the error function:

E
n

(f(x)) = f(x)� p
n

(x) = w
n

(x)
f (n+1)(c)

(n+ 1)!
,

where w
n

(x) = (x� x
0

)(x� x
1

)....(x� x
n

), and x 2 (a, b).

However, such result does not lead to a convergence result in the sense of:

lim
n!1

|f(x)� p
n

(x)| = 0, 8x 2 (a, b),

even if the function f possesses continuous derivatives of all orders in that
interval.

Example 4.5. A well-known counter example of this phenomenon is pro-
vided by the Runge function:

f(x) =
1

1 + x2
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Let p
01...n

(x) be the polynomial that interpolates this function at n + 1
equally spaced nodes on the interval [�5,+5] for example, including the
endpoints. It is easy to verify the following contradictory results:

1. The curve representing p
01...n

(x) assumes negative values, which obvi-
ously f(x) does not have.

2. Adding more equally spaced nodes, leading to higher degree polyno-
mials worsens the situation. The graphs of the resulting polynomials
have wilder oscillations, especially near the endpoints of the interval,
and the error increases beyond all bounds as confirmed in the graph .

Thus, in this case it can be shown that:

lim
n!1

max
�5x+5

|f(x)� p
n

(x)| = 1.

This behaviour is called the “Runge’ s phenomenon”.

In a more advanced study of this topic [24], it is proved that the divergence
of the polynomials is often due to the fact that the nodes of interpolation
are equally spaced, which contrary to intuition, is usually a very poor and
inappropriate choice . Specifically, one can show that:

|w
n

(x)|  n!
hn+1

4

and therefore

max
x

|f(x)� p
n

(x)|  max
x

|f (n+1)(x)|
4(n+ 1)

hn+1

If n ! 1, the order of magnitude of max
x

|f (n+1)(x)| could outweigh the
nearly-zero order of hn+1/4(n+ 1).
In [24], numerical results are conducted in the case of the Runge function
confirming this hypothesis. More specifically, it is verified that

max
�5x+5

|f (22)(x)| = O(1019)

while the corresponding value of max w

n

(x)

(n+1)!

= O(10�10)

A much better and more adequate choice of nodes leading to more accurate
results that help minimizing Runge’ s phenomenon is obtained for example
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with the set of Chebyshev nodes defined over the unit interval [�1,+1] by:

x
i

= cos[
2i� 1

2n
⇡] , 1  i  n

(Note that these values are graphically obtained by projecting equally spaced
points on the unit circle, down on the unit interval [�1,+1]). More generally
over arbitrary interval [a, b] the coordinates of Chebyshev nodes are:

x
i

=
1

2
(a+ b) +

1

2
(b� a) cos[

2i� 1

2n
⇡]

It is possible then to prove that

lim
n!1

|f(x)� p
n

(x)| = 0

This problem motivates the use of local piecewise polynomial interpolation.

4.6 Local Interpolation: Spline functions

As the global approach of interpolating polynomials does not provide in
general a systematic and e�cient way to approximate a function f(x) on
the basis of the data

D
n

= {(x
i

, y
i

)|i = 0, 1, ...n, , x
0

= a,< x
1

< ... < x
n�1

< x
n

= b},

we consider hereafter a local approach that considers approximating a func-
tion f(x) by spline functions. Such functions are piecewise polynomials
joined together with certain imposed “smoothness conditions”.
In the theory of splines, the interior points {x

i

}n
i=0

at which the function
changes its expression are called the “nodes” or “knots” of the partition.
In this chapter, we analyze successively linear, quadratic and cubic spline
interpolation rather than the global one.

4.6.1 Linear Splines

The simplest connection between two points is a line segment. A spline of
degree one or linear spline, is therefore a function that consists of linear
polynomial pieces joined together to achieve continuity of the polygonal
curve representing it. Its formal definition is given as follows:

Definition 4.2. A linear spline interpolating the data D
n

is a function s(x)
such that:
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1. s
i

(x) = {s(x)|
x2[x

i

,x

i+1

]

} is a polynomial of degree at most 1, i.e.

s
i

2 P1, 8i = 0, 1, ..., n� 1.

2. s(x) is globally continuous on [a, b], (i.e. s 2 C([a, b], the set of all
continuous functions on [a, b]).

3. s(x
i

) = y
i

, 8i = 0, 1, ..., n. (Interpolation conditions)

Note that there exists a unique function s(x) verifying these three criteria:
- To determine s(x), a total of 2n unknowns have to be evaluated as each of
the linear polynomials s

i

(x) defined by the first criterion over the subinter-
val [x

i

, x
i+1

] is determined by 2 parameters.
- The second and third criteria impose respectively continuity at the n � 1
interior nodes in addition to the n+1 interpolation conditions, that add up
to a total of n� 1 + n+ 1 = 2n restrictions.
The number of unknown parameters being equal to the number of imposed
conditions, the equations of the linear spline are uniquely determined. We
proceed directly to write them using Newton’s linear interpolating polyno-
mial form on each subinterval [x

i

, x
i+1

] | i = 0, 1, ..., n � 1. This gives in a
straightforward way:
(4.18)

s
i

(x) = [x
i

] + [x
i

, x
i+1

](x� x
i

) = y
i

+
y
i+1

� y
i

x
i+1

� x
i

(x� x
i

), 8i = 0, 1, ..., n� 1.

Clearly, by joining the linear pieces {s
i

(x) |i = 0, 1, ...,�1n}, one obtains the
unique linear spline satisfying the definition above.

The linear spline algorithm is as follows:

Algorithm 4.5. Linear splines

function l = LinearSpline(x, y, r)

% Input: 2 vectors x and y of equal length, and a real number r

% Output: l= s(r): s=linear spline

n=length(x);

% seek i : x(i) < r < x(i+1)

i=max(find(x<r));

% compute l=s(r)=s_i(r)

l=y(i) + (y(i+1)-y(i)) / (x(i+1)-x(i)) * (r-x(i));

Example 4.6. Consider the set of data D
4

= {(x
i

, y
i

= f(x
i

)) i = 0, 1, 2, 3, 4}
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where
i x

i

y
i

0 1.0 7.6
1 1.3 2.0
2 1.6 4.5
3 1.9 2.8
4 2.2 11

Determine the linear spline function interpolating D
4

, then interpolate f(1.4)

1. Given that s
i

(x) = y
i

+ y

i+1

�y

i

x

i+1

�x

i

(x� x
i

):

s
0

(x) = y
0

+ y

1

�y

0

x

1

�x

0

(x� x
0

) = 7.6� 18.6(x� 1) ; 1.0  x  1.3

s
1

(x) = y
1

+ y

2

�y

1

x

2

�x

1

(x� x
1

) = 2 + 8.3(x� 1.3) ; 1.3  x  1.6

s
2

(x) = y
2

+ y

3

�y

2

x

3

�x

2

(x� x
2

) = 4.5� 5.6(x� 1.6) ; 1.6  x  1.9

s
3

(x) = y
3

+ y

4

�y

3

x

4

�x

3

(x� x
3

) = 2.8 + 27.3(x� 1.9) ; , 1.9  x  2.2

2. Since x
1

< x = 1.4 < x
2

) f(1.4) ⇡ s
1

(1.4) = 2 + 8.3(1.4� 1.3) = 2.83

As indicated also by the graph, first order splines are not smooth functions,
the first derivative being discontinuous at each interior node. This deficiency
is overcome by looking at higher order degree splines.

4.6.2 Quadratic Spline Interpolation

We start by providing a definition for interpolating quadratic splines based
on the data D

n

.

Definition 4.3. A quadratic spline interpolating the data D
n

is a function
s(x) such that:

1. s
i

(x) = {s(x)|
x2[x

i

,x

i+1

]

}, is a polynomial of degree at most 2 , i.e.

s
i

2 P2, 8i = 0, 1, ..., n� 1.

2. s(x) is globally of class C1, that is:

(a) s 2 C([a, b]),

(b) s0 2 C([a, b]).

3. s(x
i

) = y
i

, 8i = 0, 1, ..., n. (Interpolation conditions)
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In order to determine the equations of the interpolating quadratic spline,
we start by counting the number of unknown parameters and imposed con-
ditions from the definition.
- From the first criterion, each of the s

i

(x) is determined by 3 parameters.
Hence, full obtention of s(x) requires 3n unknowns.
- The second and third criteria impose respectively continuity of s and s

0
at

the n � 1 interior nodes in addition to the n + 1 interpolation conditions,
that add up to a total of 2(n� 1) + n+ 1 = 3n� 1 restrictions.
Obviously, to obtain a unique determination of the interpolating quadratic
spline, there appears to be a deficit of one further constraint!
There is a variety of ways of providing an additional condition on top of the
three above . For example, one may impose specific values on s0(x

0

), such
as:

(4.19) s0(x
0

) = 0, (“natural quadratic spline”)

or use the forward di↵erence approximation formula to the derivative

(4.20) s0(x
0

) = [x
0

, x
1

] =
y
1

� y
0

x
1

� x
0

Instead of deriving the quadratic spline through a system of 3n equations in
3n unknowns, a shorter way to proceed is by noting first that s

0
(x) is a linear

interpolating spline on the set of data D
0
n

= {(x
i

, s0(x
i

) |i = 0, 1, ..., n}. In
this view, introduce first the set of unknowns:

{z
i

= s0(x
i

), for i = 0, 1, ...n}

Obviously, it is enough to start first by writing the equation of s
0
i

(x) followed
by an integration process.

• On the subinterval [x
i

, x
i+1

]:

s0
i

(t) = z
i

+ (
z
i+1

� z
i

x
i+1

� x
i

)(t� x
i

), 8t 2 [x
i

, x
i+1

], 8i = 0, 1, ..n� 1.

• Integration of this last equation from x
i

to x : x
i

 x  x
i+1

, yields:

(4.21) s
i

(x) = y
i

+ z
i

(x� x
i

) +
1

2
(
z
i+1

� z
i

x
i+1

� x
i

)(x� x
i

)2.

• Imposing then the interpolation conditions s
i

(x
i+1

) = y
i+1

, i = 0, 1, ...n�
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1, provides a new set of n equations:

y
i+1

= y
i

+ z
i

(x
i+1

� x
i

) + (
z
i+1

� z
i

x
i+1

� x
i

)
(x

i+1

� x
i

)2

2

• Through algebraic simplification and letting h
i+1

= x
i+1

� x
i

, one
obtains:

y
i+1

� y
i

h
i+1

=
z
i+1

+ z
i

2
, i = 0, 1, ..., n� 1.

Obviously, to determine s
i

(x), the values of the sequence {z
i

} should be
computed first. Given an arbitrary z

0

chosen as suggested in equations
(4.28 ) or (4.20 ), the sequence {z

i

}n
i=1

can be found from the recurrence
relation:

(4.22) z
i+1

= �z
i

+ 2[x
i

, x
i+1

], i = 0, 1, ..., n� 1,

where [x
i

, x
i+1

], is the set of first order divided di↵erences associated with
the data D

n

. It su�ces then to determine the equations of the quadratic
spline over the interval [a, b], from equations (4.21)

Algorithm 4.6. Algorithm for Quadratic Spline

function q = QuadraticSpline(x, y, r)

% Input: 2 vectors x and y of equal length, and a real number r

% Output: q= s(r): s= quadratic spline based on data x and y

n=length(x); z=zeros(1, n);

% compute z(1) (or set z(1)=0) then compute z(i), i=2,...,n

z(1)=(y(2)-y(1)) / (x(2)-x(1));

for i=1:n-1

z(i+1) = -z(i) + 2* (y(i+1)-y(i)) / (x(i+1)-x(i));

end

% seek i : x(i) < r < x(i+1) and compute q=s(r)=s_i(r)

i=max(find(x<r));

q=y(i) + z(i)*(r - x(i)) + (z(i+1)-z(i)) / (x(i+1)-x(i)) * ((r -x(i))^2 /2) );

Example 4.7. Find the natural quadratic spline interpolant for the follow-
ing data:

D
5

= {(�1, 2); (0, 1); (0.5, 0); (1, 1); (2, 2); (2.5, 3)}
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Let z
0

= 0. Using equation (4.21) recursively:

{z
i

}5
i=0

= {0,�2,�2, 6,�4, 8}

From equation (4.22) the natural quadratic spline is given by:
s
0

(x) = �(x+ 1)2 + 2 ;�1.0  x  0
s
1

(x) = �2x+ 1 ; 0  x  0.5.
s
2

(x) = 8(x� 1

2

)2 � 2(x� 1

2

) ; 0.5  x  1.0
s
3

(x) = �5(x� 1)2 + 6(x� 1) + 1 ; 1.0  x  2.0
s
4

(x) = 12(x� 2)2 � 4(x� 2) + 2 ; 2.0  x  2.5

Remark 4.6. On the choice of the additional condition on z
0

.

When conducting numerical tests regarding the use of the natural spline con-
dition z

0

= 0, it was found that such constraint provides a good quadratic
spline approximation results only in the case where the data {x

i

, y
i

} corre-
spond to a function f(x) for which f

0
(x

0

) = 0. This is shown in the following
figure for f(x) = 3 cos(2x).

Otherwise, the additional condition z
0

= [x
0

, x
1

] that generally approxi-
mates f

0
(x

0

), provides more accurate results. The next 2 figures attest for
such facts for the functions:

• f(x) = x cos(x)� 3 sin(3x)
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• f(x) = 3 sin(2x)
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4.6.3 Cubic Spline Interpolation

In the previous two cases one notes the following:
- The polygonal lines representing linear splines lack of smoothness as the
slope of the spline may change abruptly at each node.
- As for quadratic splines, the discontinuity is in the 2nd derivative, and is
therefore not so evident; nevertheless, the curvature of the spline changes
abruptly at each node, and the curve may not be visually pleasing.
Cubic splines allow for smoother data fitting and they are most frequently
used in applications. It can be proved that cubic spline functions are among
the best interpolation functions that are available at an acceptable compu-
tational cost. In this case, we join cubic polynomials together in such a
way that the resulting spline function has its first and second derivatives
continuous everywhere. At each interior node, 3 conditions will be imposed,
so that the graph of the function will look smoother than in the case of
linear and quadratic splines. Discontinuities, of course, may occur in the 3rd

derivative, but these cannot be easily detected visually. Cubic splines are
formally defined as follows.

Definition 4.4. A cubic spline that interpolates the data D
n

, is a function
s(x) such that:

1. s
i

(x) = {s(x)|
x2[x

i

,x

i+1

]

} is a polynomial of degree at most 3 , i.e.

s
i

2 P 3 8i = 0, 1, ..., n� 1.

2. s(x) 2 C3([a, b]), i.e.:

(a) s 2 C([a, b]).

(b) s0 2 C([a, b]).

(c) s00 2 C([a, b]).

3. s(x
i

) = y
i

, 8i = 0, 1, ..., n. (Interpolation conditions)

Following the same pattern as preceedingly, and counting the number of
unknown parameters and imposed conditions from the definition, we note
the following:
- From the first criterion, each of the s

i

(x) is determined by 4 parameters.
Hence, full obtention of s(x) requires 4n unknowns.
- The second and third criteria impose now respectively 3(n� 1) continuity
conditions for s, s

0
and s

00
at the interior nodes, in addition to the n + 1

interpolation conditions
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Hence for a total of 4n unknowns, one has a total of 3(n�1)+n+1 = 4n�2
constraints. Obviously, to allow unique determination of the interpolating
cubic spline, there appears to be a deficit of two constraints!
These two supplementary conditions may be for example supplied as follows:

1. Letting s00(x
0

) = s00(x
n

) = 0, the spline is called a natural spline (or
free boundary)

2. An alternative to the natural spline is to use:

s00(x
0

) =
1

2
[x

0

, x
1

, x
2

] ⇡ f”(x
0

) and s00(x
n

) =
1

2
[x

n�2

, x
n�1

, x
n

] ⇡ f”(x
n

)

3. Letting s0(x
0

) = f
0

and s0(x
n

) = f
n

, the spline is called a clamped
spline. However, for this type of boundary conditions to hold, it
is necessary to have the values of f 0(x

0

) and f 0(x
n

)( or at least an
accurate approximation).

We will restrict our analysis to natural cubic splines only.
Instead of determining the solution of the problem through a system of
4n equations in 4n unknowns, we note that s

0
(x) and s

00
(x) are quadratic

and linear splines based respectively on the data sets D
0
n

= {(x
i

, s0(
i

)} and
D

00
n

= {(x
i

, s”(
i

)}, where the unknowns:

{z
i

= s0(x
i

)|i = 0, 1, ..., n}

and
{w

i

= s00(x
i

)|i = 0, 1, ..., n}

represent respectively the sets of slopes and moments at the nodes.
Obviously, we should proceed by first writing s”

i

(x) on the interval [x
i

, x
i+1

]
followed by 2 successive integrations.

• On the subinterval [x
i

, x
i+1

]:
(4.23)

s
00
i

(t) = w
i

+
w
i+1

� w
i

x
i+1

� x
i

(t� x
i

), 8t 2 [x
i

, x
i+1

], 8i = 0, 1, ..., n� 1.

• Integration of (4.23) from x
i

to x, x
i

 x  x
i+1

yields:
(4.24)

s0
i

(x)�z
i

= w
i

(x�x
i

)+
w
i+1

� w
i

x
i+1

� x
i

(x� x
i

)2

2
, 8x 2 [x

i

, x
i+1

], 8i = 0, 1, ..., n�1
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• Imposing in (4.24) the conditions s0
i

(x
i+1

) = z
i+1

at internal nodes,
provide a new set of n� 1 equations. Specifically:

(4.25)
z
i+1

� z
i

h
i+1

=
w
i+1

+ w
i

2
, i = 0, 1, ..., n� 1.

which is equivalent to:

(4.26) z
i+1

= z
i

+ h
i+1

w
i

+ w
i+1

2
, i = 1, ..., n� 1.

• A second integration of equation (4.24) from x
i

to x yields the cubic
polynomials s

i

(x):
(4.27)

s
i

(x) = y
i

+z
i

(x�x
i

)+w
i

(x� x
i

)2

2
+
w
i+1

� w
i

6h
i+1

(x�x
i

)3, 8x 2 [x
i

, x
i+1

], 8i = 0, 1, ..., n�1.

• Imposing then the interpolation conditions s
i

(x
i+1

) = y
i+1

provides a
new set of n� 1 equations given by:
(4.28)

y
i+1

= y
i

+ z
i

h
i+1

+ w
i

h2
i+1

2
+

(w
i+1

� w
i

)h2
i+1

6
, 8i = 0, 1, ..., n� 1

• This last equation leads to 2 simultaneous equations verified at all
internal node of the spline, i.e. for all i = 1, .., n� 1:

(

y

i+1

�y

i

h

i+1

= z
i

+ (w
i+1

+ 2w
i

)hi+1

6

y

i

�y

i�1

h

i

= z
i�1

+ (w
i

+ 2w
i�1

)hi

6

Subtracting these last 2 equations and using (4.25) gives:

[x
i

, x
i+1

]�[x
i�1

, x
i

] = h
i

w
i�1

+ w
i

2
+h

i+1

(w
i+1

+ 2w
i

)

6
�h

i

(w
i

+ 2w
i�1

)

6

Equivalently:
(4.29)
h
i

6
w
i�1

+
h
i

+ h
i+1

3
w
i

+
h
i+1

6
w
i+1

= (h
i

+h
i+1

)[x
i�1

, x
i

, x
i+1

], i = 1, 2, ..., n�1

Since the sought spline is “natural” (w
0

= w
n

= 0), equations (4.29) provide
therefore a system of n� 1 equations in n� 1 unknowns given by:

(4.30) Aw = r,
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where the coe�cient matrix A is:
(4.31)

A =

0

B

B

B

B

@

(h
1

+ h
2

)/3 h
2

/6 0 0 0 ... 0 ... 0
h
2

/6 (h
2

+ h
3

)/3 h
3

/6 0 0 ... 0 ... 0
0 h

3

/6 (h
3

+ h
4

)/3 h
4

/6 0 ... 0 ... 0
0 0 h

4

/6 ... ... ... ... ... h
n�1

/6
0 ... ... 0 ... ... ... h

n�1

/6 (h
n�1

+ h
n

)/3

1

C

C

C

C

A

n�1⇥n�1

and the vectors w and r are respectively:

w = (w
1

, w
2

, ..., w
n�1

)T

and

(4.32) r = (r
1

, r
2

, ..., r
n�1

)T with r
i

= (h
i

+ h
i+1

)[x
i�1

, x
i

, x
i+1

]
y

Note also that the matrix A = {a
ij

} has the following properties:

- A is symmetric, since a
ij

= a
ji

- A is tridiagonal, since a
ij

= 0 for all i, j with |i� j| > 1.

- A is strictly diagonally dominant, since |a
ii

| >
P

j 6=i

|a
ij

|, 8i.

Under these conditions, the system (4.30) has a unique solution that can be
obtained through a straightforward Gauss reduction process that does not
necessitate any pivoting strategy. We can now write a pseudocode for the
natural cubic spline.

Algorithm 4.7. Cubic Spline

% Input the data D_n

% Output: cubic spline s(x) interpolating on D_n

% Obtain first w by solving Aw=r by performing the following steps:

1. Generate r = [r
1

, ..., r
n�1

]T with r
i

= (h
i

+ h
i+1

)[x
i�1

, x
i

, x
i+1

], i =
1, ..., n� 1.

2. Generate the matrix A.

3. Perform Gauss reduction on [A|r].
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4. Perform back substitution on reduced system to get w with w
0

=
w
n

= 0.

5. Compute z
0

= [x
0

, x
1

]� (2w
0

+ w
1

)h
1

/6

6. Compute z
i+1

= z
i

+ h
i+1

(w
i+1

+ w
i

)/2, i = 0, 1, ..., n� 1.

7. Generate s(x) through generating s
i

(x):
s
i

(x) = y
i

+z
i

(x�x
i

)+w
i

(x�x
i

)2/2+((w
i+1

�w
i

/6h
i+1

)(x�x
i

)3, i =
0, 1, ..., n� 1.

Example 4.8. Determine the natural cubic spline interpolating the follow-
ing set of data:

D
3

= {(�1, 1); (1, 2); (2,�1); (2.5, 0)}

• Since w
0

= w
3

= 0
and h

1

= x
1

� x
0

= 2 ;h
2

= x
2

� x
1

= 1 ;h
3

= x
3

� x
2

= 0.5,
the system (4.30) is:

✓

1 1/6
1/6 1/2

◆✓

w
1

w
2

◆

=

✓

�7/2
5

◆
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• Applying the Naive Gauss reduction on that system followed by back
substitution:

w = [w
0

= 0, w
1

= �93/17, w
2

= 201/17, w
3

= 0]0

• Using (4.28) with i = 0 leads to

z
0

= [x
0

, x
1

]� (2w
0

+ w
1

)h
1

/6 = �45/34

• Once the value of z
0

and (4.26), the vector of slopes is fully determined
with:

z = [z
0

= �45/34, z
1

= �� 231/34/17, z
2

= �123/34, w
3

= �45/68]0

• Using (4.27) for successively i = 0, 1, 2, the equations of the cubic
spline are then as follows:

S(x) =

8

<

:

S
0

(x) = 1� 9

7

(x+ 1)� 31

68

(x+ 1)3 ; �1  x  1
S
1

(x) = 2� 231

34

(x� 1)� 93

17

(x� 1)2 + 49

17

(x� 1)3 ; 1  x  2
S
2

(x) = �1��123

34

(x� 2) + 201

17

(x� 2)2 � 67

17

(x� 2)3 ; 2  x  2.5

4.6.4 Solving a Triadiagonal System

Note that in case in D
n

, the x-data are equidistant, i.e.

h
i+1

= x
i+1

� x
i

= h, 8i = 0, ..., n� 1

the matrix A in (4.31) becomes:

A = h

0

B

B

B

B

B

B

@

2/3 1/6 0 0... 0
1/6 2/3 1/6 0.. 0
0 1/6 2/3 1/6.. 0
... ... ... ... ...
... ... ... ... ...
0 ... 0 1/6 2/3

1

C

C

C

C

C

C

A
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Since also [x
i�1

, x
i

, x
i+1

] = y

i+1

�2y

i

+y

i�1

2h

2

, the right hand side r in (4.32)
simplifies, and the system (4.30) becomes:

h

0

B

B

B

B

B

B

@

2/3 1/6 0 0... 0
1/6 2/3 1/6 0.. 0
0 1/6 2/3 1/6 0..
... ... ... ... ...
... ... ... ... ...
0 ... 0 1/6 2/3

1

C

C

C

C

C

C

A

0

B

B

B

B

B

B

@

w
1

w
2

...

...

...
w
n�1

1

C

C

C

C

C

C

A

=
1

h

0

B

B

B

B

@

y
2

� 2y
1

+ y
0

y
3

� 2y
2

+ y
1

y
4

� 2y
3

+ y
2

......
y
n

� 2y
n�1

+ y
n�2

1

C

C

C

C

A

.

The elements of the matrix A can be made independent of h, through di-
viding each of the equations by h, thus yielding the following tridiagonal
system:

0

B

B

B

B

B

B

@

2/3 1/6 0 0... 0
1/6 2/3 1/6 0.. 0
0 1/6 2/3 1/6 0..
... ... ... ... ...
... ... ... ... ...
0 ... 0 1/6 2/3

1

C

C

C

C

C

C

A

0

B

B

B

B

B

B

@

w
1

w
2

...

...

...
w
n�1

1

C

C

C

C

C

C

A

=
1

h2

0

B

B

B

B

B

B

@

y
2

� 2y
1

+ y
0

y
3

� 2y
2

+ y
1

y
4

� 2y
3

+ y
2

...

...
y
n

� 2y
n�1

+ y
n�2

1

C

C

C

C

C

C

A

.

In what follows, we consider the general triadiagonal system of equations:
Aw = r:

0

B

B

B

B

B

B

@

a
1

b
1

0 0... 0
c
1

a
2

b
2

0.. 0
0 c

2

a
3

b
3

0..
... ... ... ... ...
... ... c

N�2

a
N�1

b
N�1

0 ... 0 c
N�1

a
N

1

C

C

C

C

C

C

A

0

B

B

B

B

B

B

@

w
1

w
2

...

...

...
w
N

1

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

@

r
1

r
2

...

...

...
r
N

1

C

C

C

C

C

C

A

,

where the “diagonal” entries of the matrix A are generated by :

8

<

:

the ”main diagonal” vector a = [a
i

: 1  i  N ]
the “upper diagonal” vector b = [b

i

: 1  i  N � 1]
the ‘lower diagonal” vector c = [c

i

: 1  i  N � 1]

satisfying the following properties:

⇢

|a
i

| > |b
i

|+ |c
i�1

| : 2  i  N � 1
|a

1

| > |b
1

|, |a
N

| > |c
N�1

|
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The following algorithm solves this given system:

Algorithm 4.8. Diagonally dominant Triangular systems

function w=SolveTridiag(a,b,c,r)

% N is the dimension of a and r; N-1 is the dimension of b and c

% Start with the Gauss reduction process then use back-substitution

for k=1:N-1

m=c(k)/a(k);

a(k+1)=a(k+1)-m*b(k);

r(k+1)=r(k+1)-m*r(k);

end

for k=N:-1:1

w(k)=r(k)/a(k);

if k>1

r(k-1)=r(k-1)-w(k)*b(k-1);

end

end

This algorithm takes 2N�1 divisions, 3(N�1) multiplications and as many
algebraic additions, thus a total of 8N � 7 flops.

4.6.5 Errors in Spline Interpolation

From ([25], pages 14 and 61) , we can state the following convergence result:

Theorem 4.6. Let f be a function in Ck+1[a, b], and S
k

the Spline Function
, that interpolates f based on the set of data D

n

, where k = 1, 2, 3. Then,

max
[a,b]

|f(x)� S
k

(x)|  C
k

hk+1max
[a,b]

|f (k+1)(x)|

where h = max |x
i

� x
i�1

|, for 1  i  n.

For example:

• If k = 1, then max
[a,b]

|f(x)� S
1

(x)| = O(h2)

• If k = 2, then max
[a,b]

|f(x)� S
2

(x)| = O(h3)

• If k = 3, then max
[a,b]

|f(x)� S
3

(x)| = O(h4)

Note also that in Spline Interpolation, increasing the number of nodes for a
fixed value of k, will definitely lead to convergence. One can prove that:

8x 2 [a, b], ] lim
n!1

S
k

(x) = f(x).



Polynomial and Splines Interpolation 177

This property is noticeably absent for global Lagrange interpolation (recall
Runge example).

4.7 Concluding Remarks

1. Based on a set of data D
n

, considering higher degree Lagrange in-
terpolating polynomials does not guarantee reaching more accurate
approximations of the unknown function f ; this problem can be over-
come by spline functions, particularly cubic splines. However, neither
are suitable to extrapolate information from the available set of data
D

n

. To generate new values at points lying outside the interval [x
0

, x
n

],
one could use for example, regression analysis based least squares ap-
proximations.

2. Polynomial interpolation can also be used to approximate multi-dimensional
functions. In particular, spline functions interpolation is well suited
when the region is partitioned into polygons in 2D (triangles or quadri-
laterals) and polyhedra in 3D (tetrahedra or prisms). See([24]).
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4.8 Exercises

Polynomial Interpolation

1. Use the Lagrange interpolation process to obtain a polynomial of least
degree that satisfies the following set of data: D

3

= {(0, 7), (2, 11), (3, 28), (4, 63)}.

2. For the four interpolation nodes �1, 1, 3, 4, what are the l
i

functions
required in the Lagrange interpolation procedure ? Draw the graphs
of these functions to show their essential properties. Use Lagrange
interpolation form to obtain a polynomial of least degree that satisfies
the following set of data: D

3

= {(�1, 1), (1, 0), (3, 2), (4,�3)}.

3. Write the Lagrange form of the interpolating polynomial of degree  2
that interpolates f(x) at x

0

, x
1

and x
2

, where x
0

< x
1

< x
2

.

4. Given the data

D
4

= {(1,�1), (2,�1/3), (2.5, 3/32), (3, 4/3), (4, 25)}

(a) Construct the divided di↵erence table.

(b) Use the ”best” quadratic then cubic Newton’s interpolating poly-
nomial, to find an approximation to f(2.9).

5. Write Newton’s interpolating polynomial for the data shown:

{(0, 7), (2, 11), (3, 28), (4, 63)}

6. Using a di↵erence table, derive the polynomial of least degree that
assumes the values 2, 14, 4, 2 and 2 respectively for x = �2,�1, 0, 1
and 2. Use that result, to find a polynomial that takes the values
shown and has at x = 3 the value 10.

7. The polynomial p(x) = x4 � x3 + x2 � x+ 1 satisfies the following set
of data

i xi yi

0 �2 31
1 �1 5
2 0 1
3 1 1
4 2 11
5 3 61
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Find a polynomial q that takes these values:

i xi yi

0 �2 31
1 �1 5
2 0 1
3 1 1
4 2 11
5 3 30

8. Construct a divided di↵erence (or di↵erence) table based on the two
given sets of data in the preceding exercise, then use Newton’s poly-
nomials of all orders (1,2, 3, 4) to approximate f(2.5), in each case.

9. Create the table of all Neville’s polynomials in P
4

satisfying the fol-
lowing set of data:

i xi yi

0 1.0 �1.5
1 2.0 �0.5
2 2.5 0.0
3 3.0 0.5
4 4.0 1.5

10. Determine by two methods the polynomial of degree 2 or less whose
graph passes through the points (0, 1.1), (1, 2), and (2, 4.2). Verify that
they are the same.

11. Let f(x) = x3 + 2x2 + x + 1. Find the polynomial of degree 4 that
interpolates the values of f at x = �2,�1, 0, 1, 2. Find the polynomial
of degree 2 that interpolates the values of f at x = �1, 0, 1.

12. (a) - Consider the following set of data:

D
5

= {(�2, 1); (�1, 4); (0, 11); (1, 16); (2, 13); (3,�4)}

Show that the interpolating polynomial based on D
5

is cubic.
(b) - The set D

5

is altered as follows:

D
0
5

= {(�2, 1); (�1, 4); (0, 11); (1, 16); (2, 10); (3,�4)},

so that y
4

= 10. Based on D
0
5

and using the polynomial found in part
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(a), find q
01234

(x), without computing new divided di↵erences.

13. The polynomial p(x) = x4 + 3x3 � 2x2 + x+ 1 interpolates the set of
data

i 0 1 2 3 4
xi �1 �2 0 1 2
yi �4 �17 1 4 35

Without computing any Di↵erence or Divided Di↵erence, use Newton’s
form to determine the polynomial q(x) interpolating the following set
of data:

i 0 1 2 3 4
xi �1 �2 0 1 2
yi �4 0 1 4 35

Spline Interpolation

14. Determine whether each of the following functions is a first degree
spline, and plot its graph.

(a)

S(x) =

8

<

:

x ; �1  x  0
1� x ; 0  x < 1
2x� 2 ; 1  x  2

(b)

S(x) =

8

<

:

x ; �1  x  0.5
0.5x+ 2(x� 0.5) ; 0.5  x  2

x+ 1.5 ; 2  x  4

15. Determine the linear spline function s(x) interpolating the set of data
D

3

and plot its graph. Interpolate f(2.4).

D
3

= {(0, 1); (1.5, 3); (2, 5); (3, 2)}

16. Is S(x) = |x| a first degree spline ? Why or why not ?

17. Find the natural quadratic spline interpolant for the following data
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(a)
i x y
0 �1 2
1 0 1
2 1/2 0
3 1 1
4 2 2
5 5/2 3

(b)
i x y
0 1 2
1 2 1
2 5/2 0
3 3 1
4 4 3

18. Are these functions quadratic splines ? Explain why or why not ?Plot
their graphs.

(a)

Q(x) =

⇢

�x2 ; 0  x  1
x ; 0  x  100

(b)

Q(x) =

8

<

:

x ; �50  x  1
x2 ; 1  x  2
4 ; 2  x  50

19. Determine a quadratic spline that interpolates the data f(0) = 0, f(1) =
1, f(2) = 2, and satisfiea s0(0) = 2.

20. Do there exist a,b, c and d so that the function

S(x) =

8

<

:

�x ; �10  x  �1
ax3 + bx2 + cx+ d ; �1  x  1

x ; 1  x  10

is a natural cubic spline function ?
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21. Do there exist coe�cients for which the function

S(x) =

8

<

:

x+ 1 ; �2  x  �1
ax3 + bx2 + cx+ d ; �1  x  1

x� 1 ; 1  x  2

is a natural cubic spline function ? Why or why not ?

22. Determine the natural cubic spline that interpolates the function f(x) =
x6 over the interval [0, 2] using nodes 0, 1 and 2 .

23. Find the natural cubic spline interpolant for this table

i x y
0 1 0
1 2 1
2 3 0
3 4 1
4 5 0

24. Find the natural cubic spline interpolant for this table

i x y
0 1 0
1 2 1
2 3 0
3 4 1
4 5 0

6 1

25. Consider the following set of data generated using the function f(x) =
xcos x� 2x2 + 3x� 1

i x y
0 0.1 �0.620499
1 0.2 �0.283986
2 0.3 +0.006600
3 0.4 +0.248424

(a) Construct the natural cubic spline for the data above

(b) Use the cubic spline constructed above to approximate f(0.25
and f 0(0.25), and calculate the absolute error.
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26. Give an example of a cubic spline with nodes 0, 1, 2, and 3 that is
quadratic in [0, 1], cubic in [1, 2], and quadratic in [2, 3].

27. Give an example of a cubic spline with nodes 0, 1, 2, and 3 that is
linear in [0, 1], but of degree 3 in the other two intervals.

28. List all the ways in which the following functions fail to be natural
cubic splines:

(a)

S(x) =

8

<

:

x+ 1 ; �2  x  �1
x3 � 2x+ 1 ; �1  x  1

x� 1 ; 1  x  2

(b)

S(x) =

⇢

x3 + x� 1 ; �1  x  0
x3 � x� 1 ; 0  x  1

29. Determine the coe�cients so that the function

S(x) =

⇢

x2 + x3 ; 0  x  1
a+ bx+ cx2 + dx3 ; 1  x  2

is a cubic spline that has the property S000
1

(x) = 12

30. Use the data points (0, 1), (1, e), (2, e2), (3, e3) to form a natural cubic
spline that approximates f(x) = ex.

31. Use the cubic spline obtained in the preceding exercise, to approximate
R

3

0

ex dx. What is the relative error in this approximation ?

32. Construct a natural cubic spline to approximate f(x) = e�x based
on the nodes x = 0, 0.25, 0.75 and 1. Integrate the spline over the
interval [0, 1] and compare the results to

R

1

0

e�x dx. Use the deriva-
tives of the spline to approximate f 0(0.5) and f”(0.5). Compare the
approximations to the actual values.

33. How many additional conditions are needed to specify uniquely a spline
of degree 4 over n knots ?

34. Let S be a cubic spline that has knots t
0

< t
1

< ... < t
n

. Suppose that
on the 2 intervals [t

0

, t
1

] and [t
2

, t
3

], S reduces to linear polynomials.
What can be said of S on [t

1

, t
2

]?
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4.9 Computer Projects

Exercise 1: Polynomial Interpolation
Let x = [x

1

, x
2

, ..., x
n

] and y = [y
1

, y
2

, ..., y
n

] be 2 vectors of equal length n,

representing a set of n points in the plane:

D
n

= {(x
i

, y
i

)|x
1

< x
2

< ... < x
n

; i = 1, 2, ..., n}

where y
i

= f(x
i

) for some real valued function f .
To solve Exercise 1, use the MATLAB function p =NevillePolyno-
mial(x, y, r) given in the lecture notes. (DO NOT CHECK VALIDITY
OF INPUTS)
This function takes as input the 2 vectors x and y and a real number r, with
x
1

< r < x
n

, and computes

p = p
1,2,...,n

(r)

where p
1,2,...,n

(.) is Neville’s form of the Interpolating Polynomial based on the set of data D
n

.

1. Write a MATLAB function v =VectorNevillePolynomial(x, y,
w) that takes as input the 2 vectors x and y, and a vector w of any
length, and computes the values of Neville’s polynomial at each compo-
nent of w. The output of this function is a vector v whose components
are:

v(i) = p
1,2,...,n

(w(i)), 8 i = 1, ..., length(w)

(Assume that x
1

< w(i) < x
n

8i).

2. Consider the Runge function f(x) = 1

1+x

2

on the interval [�5,+5].

Write a MATLAB function [x, fx, s, fs] =GenerateVectors(n,
f) that takes as input an integer n and the Runge function f. Your
function:

• First : generates a vector x of length n, whose components are
n-equally spaced points in the interval [�5,+5] including the end-
points, evaluates f at these points, and saves these values in a
vector fx.
Hint: The MATLAB built-in function linspace(a,b,n) generates a row vector of n
equally spaced points between a and b, including the end-points.
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• Secondly : generates a vector s of length (n� 1) whose ith com-
ponent is the midpoint of the interval [x

i

, x
i+1

], that is:

s = [s
1

=
x
1

+ x
2

2
, ..., s

i

=
x
i

+ x
i+1

2
, ..., s

n�1

=
x
n�1

+ x
n

2
]

Your function then evaluates f at all components of s and saves
these values in a vector fs.

3. Write a MATLAB function PlotPolynomial(n, f) that takes as
input an integer n and the Runge function f and plots in the same
figure window, the graphs of f and p

1,2,...,n

over the set of ordered
points in

X = x U s = {x
i

, s
i

, x
i+1

| i = 1, ..., n� 1}

Note that p
1,2,...,n

is Neville’s form of the Interpolating Polynomial
based on the set of data represented by x and fx.

4. Write a MATLAB function EP =ErrorPolynomial(n, f) that
takes as input an integer n and the Runge function f. Your func-
tion outputs a matrix EP of size (n � 1) ⇥ 4, whose 4 columns are
successively the vectors:

f(s) p
1,2,...,n

(s) err = |p
1,2,...,n

(s)�f(s)| relerr =
|p

1,2,...,n

(s)� f(s)|
|f(s)|

5. Test each of the functions of this exercise on 2 di↵erent test cases
n > 10, (n : odd integer). Save your results and graphs in a word
document.

Exercise 2: Spline Interpolation
All questions are as in Exercice 2, but applied to the QUADRATIC SPLINE
instead of the interpolating polynomial.
Let x = [x

1

, x
2

, ..., x
n

] and y = [y
1

, y
2

, ..., y
n

] be 2 vectors of equal length n,

representing a set of n points in the plane:

D
n

= {(x
i

, y
i

)|x
1

< x
2

< ... < x
n

; i = 1, 2, ..., n}

where y
i

= f(x
i

) for some real valued function f .
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To solve Exercise 2, use the MATLAB function q =QuadraticSpline(x,
y, r) given in the lecture notes. (DO NOT CHECK VALIDITY OF IN-
PUTS)
This function takes as input the 2 vectors x and y and a real number r, with
x
1

< r < x
n

, and computes
q = Q(r)

where Q(.) is the Quadratic Spline Interpolating the set of data D
n

.

1. Write a MATLAB function v =VectorQuadraticSpline(x, y, w)
that takes as input the 2 vectors x and y, and a vector w of any
length, and computes the values of the Quadratic Spline function at
each component of w.
(Assume that x

1

< w(i) < x
n

8i = 1, ..., length(w)).

2. Consider the Runge function f(x) = 1

1+x

2

on the interval [�5,+5].

Write a MATLAB function PlotSpline(n, f) that takes as input
an integer n and the Runge function f and plots in the same figure
window, the graphs of f and Q over the set of ordered points in

X = x U s = {x
i

, s
i

, x
i+1

| i = 1, ..., n� 1}

Note that Q is the Quadratic Spline interpolating the set of data rep-
resented by x and fx.
Hint: Call for the function GenerateVectors(n, f) programed in
Exercise 2.

3. Write a MATLAB function ES =ErrorSpline(n, f) that takes as
input the integer n and the Runge function f. Your function outputs
a matrix ES of size (n+ 1)⇥ 4 whose 4 columns are successively the
vectors:

f(s) Q(s) err = |Q(s)� f(s)| relerr =
|Q(s)� f(s)|

|f(s)|

4. Test each of the functions of this exercise on 2 di↵erent test cases
n > 20, (n : odd integer). Save your results and graphs in a word
document.

Exercise 3: Quadratic Spline Interpolation
LetD

n

= {(x
i

, y
i

)|i = 1, 2, ..., n ; x
1

< x
2

< ..... < x
n

; y
i

= f(x
i

) , f : unknown}
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be a given set of n points in the plane. The objective of this exercise is to
determine the Quadratic Spline Interpolant S(x), based on D

n

. For this
purpose:

1. Write a Matlab function z = QuadrSplineDerivatives(x,y) which
takes as input a set of 2 vectors x = [x

1

, x
2

, ..., x
n

] and y = [y
1

, y
2

, ..., y
n

]
as given by D

n

, and returns a vector z : whose components are the
derivatives of the Quadratic Spline at all nodes of the interpolation.
Select z(1) arbitrarily.

2. Write a Matlab function C = QuadrSplineCoe�cients(x,y)
which takes as input a set of 2 vectors x and y, finds the deriva-
tives of the corresponding Quadratic Spline at all the nodes of the
interpolation, and returns a matrix C of size 3 ⇥ (n � 1) represent-
ing the coe�cients (y

i

, z
i

, z

i+1

�z

i

x

i+1

�x

i

) of the Quadratic Spline over each

subinterval [x
i

, x
i+1

].

3. Write a Matlab function E = EvaluateQuadrSpline(x,y,u) which
computes the value of S(u) by locating first u in the appropriate subin-
terval [x

i

, x
i+1

]. Your function should also display an error message if
u 62 [x

1

, x
n

]. (For example”The value of S(2.5) cannot be evaluated”)

4. Write a Matlab function V = EvaluateQuadrSpline1(x,y,w)
which computes the value of the Quadratic Spline at each component
of a given vector w of any length.

5. Write a Matlab function PlotQuadrSpline(x,y) which takes as
input a set of 2 vectors x and y and plots the graph of S(x) over each
subinterval [x

i

, x
i+1

].

6. Test each one of the functions above for 2 di↵erent test cases, and save
the results in a word document.
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